Browse > Article
http://dx.doi.org/10.4014/jmb.1711.11039

Gut Bacterial Diversity of Insecticide-Susceptible and -Resistant Nymphs of the Brown Planthopper Nilaparvata lugens Stål (Hemiptera: Delphacidae) and Elucidation of Their Putative Functional Roles  

Malathi, Vijayakumar M. (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources)
More, Ravi P. (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources)
Anandham, Rangasamy (Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University)
Gracy, Gandhi R. (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources)
Mohan, Muthugounder (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources)
Venkatesan, Thiruvengadam (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources)
Samaddar, Sandipan (Department of Environmental and Biological Chemistry, Chungbuk National University)
Jalali, Sushil Kumar (Biotechnology Laboratory, Department of Molecular Entomology, ICAR-National Bureau of Agricultural Insect Resources)
Sa, Tongmin (Department of Environmental and Biological Chemistry, Chungbuk National University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.6, 2018 , pp. 976-986 More about this Journal
Abstract
Knowledge about the gut bacterial communities associated with insects is essential to understand their roles in the physiology of the host. In the present study, the gut bacterial communities of a laboratory-reared insecticide-susceptible (IS), and a field-collected insecticide-resistant (IR) population of a major rice pest, the brown planthopper Nilaparvata lugens, were evaluated. The deep-sequencing analysis of the V3 hypervariable region of the 16S rRNA gene was performed using Illumina and the sequence data were processed using QIIME. The toxicological bioassays showed that compared with the IS population, IR population exhibited 7.9-, 6.7-, 14.8-, and 18.7-fold resistance to acephate, imidacloprid, thiamethoxam, and buprofezin, respectively. The analysis of the alpha diversity indicated a higher bacterial diversity and richness associated with the IR population. The dominant phylum in the IS population was Proteobacteria (99.86%), whereas the IR population consisted of Firmicutes (46.06%), followed by Bacteroidetes (30.8%) and Proteobacteria (15.49%). Morganella, Weissella, and Enterococcus were among the genera shared between the two populations and might form the core bacteria associated with N. lugens. The taxonomic-to-phenotypic mapping revealed the presence of ammonia oxidizers, nitrogen fixers, sulfur oxidizers and reducers, xylan degraders, and aromatic hydrocarbon degraders in the metagenome of N. lugens. Interestingly, the IR population was found to be enriched with bacteria involved in detoxification functions. The results obtained in this study provide a basis for future studies elucidating the roles of the gut bacteria in the insecticide resistance-associated symbiotic relationship and on the design of novel strategies for the management of N. lugens.
Keywords
Gut bacterial community; Illumina MiSeq; insecticide resistance; Nilaparvata lugens; 16S rRNA; deep sequencing;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y. 2017. Gut symbiont enhances insecticide resistance in a significant pest, the orient fruit fly Bactrocera dorsalis (Hendel). Microbiome 5: 13.   DOI
2 Almeida LG, Moraes LA, Trigo JR, Omoto C, Consoli FL. 2017. The gut microbiota of insecticide-resistant insects houses insecticide degrading bacteria: a potential source for biotechnological exploitation. PLoS One 12: e0174754.   DOI
3 Gayatri Priya N, Ojha A, Kajla MK, Raj A, Rajagopal R. 2012. Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 7: e30768.   DOI
4 Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. 2014. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 14: 136.   DOI
5 Tang M, Lv L, Jing SL, Zhu LL, He GC. 2010. Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl. Environ. Microbiol. 76: 1740-1745.   DOI
6 Wang A, Yao Z, Zheng W, Zhang H. 2014. Bacterial communities in the gut and reproductive organs of Bactrocera minax (Diptera: Tephritidae) based on 454 pyrosequencing. PLoS One 9: e106988.   DOI
7 Malathi VM, Jalali SK, Sidde Gowda DK, Mohan M, Venkatesan T. 2015. Establishing the role of detoxifying enzymes in field-evolved resistance to various insecticides in the brown planthopper, Nilaparvata lugens in South India. Insect. Sci. 24: 35-46.
8 Kim YJ, Lee YJ, Kim GH, Lee SW, Ahn YJ. 1999. Toxicity of tebufenpyrad to Tetranychus urticae (Acari: Tetranychidae) and Amblyseius womersleyi (Acari: Phytoseiidae) under laboratory and field conditions. J. Econ. Entomol. 92: 187-192.   DOI
9 Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336.   DOI
10 Bartam AK, Lynch MDJ, Stearns JC, Moreno-Hagelsieb G, Nuefeld JD. 2011. Generation of multimillion-sequence 16S rRNA gene libraries from complex microbial communities by assembling paired-end Illumina reads. Environ. Microbiol. 77: 3846-3852.   DOI
11 Wang Y, Naumann U, Wright ST, Warton DI. 2012. Mvabund - an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3: 471-474.   DOI
12 Parks DH, Tyson GW, Hugenholtz P, Beiko RG. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30: 3123-3124.   DOI
13 Arndt D, Xia J, Liu Y, Zhou Y, Guo AC, Cruz JA, et al. 2012. METAGENassist: a comprehensive web server for comparative metagenomics. Nucleic Acids Res. 40: W88-W95.   DOI
14 Metsalu T, Vilo J. 2015. ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43: W566-W570.   DOI
15 Team RC. 2014. R: a language and environment for statistical computing [Internet]. R Foundation for Statistical Computing, Vienna, Austria.
16 Xu HX, Zheng XS, Yang YJ, Wang X, Ye GY, Lu ZX. 2014. Bacterial community in different populations of rice brown planthopper, Nilaparvata lugens (Stal). Rice Sci. 21: 59-64.   DOI
17 Zhang J, Zhang Y, Li J, Liu M, Liu Z. 2016. Midgut transcriptome of the cockroach Periplaneta americana and its microbiota: digestion, detoxification and oxidative stress response. PLoS One 1: e0155254.
18 Chandler JA, Morgan Lang J, Bhatnagar S, Eisen JA, Kopp A. 2011. Bacterial communities of diverse Drosophila species: ecological context of a host–microbe model system. PLoS Genet. 7: e1002272.   DOI
19 Boucias DG, Cai Y, Sun Y, Lietze V-U, Sen R, Raychoudhury R, et al. 2013. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol. Ecol. 22: 1836-1853.   DOI
20 Kohler T, Dietrich C, Scheffrahn RH, Brune A. 2012. Highresolution analysis of gut environment and bacterial microbiota reveals functional compartmentation of the gut in wood-feeding higher termites (Nasutitermes spp.). Appl. Environ. Microbiol. 78: 4691-4701.   DOI
21 Kautz S, Rubin BER, Moreau CS. 2013. Bacterial infections across the ants: frequency and prevalence of Wolbachia, Spiroplasma, and Asaia. Psyche (Camb. Mass.) 2013: 936341.
22 Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, et al. 2014. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl. Environ. Microbiol. 80: 5254-5264.   DOI
23 Segata N, Baldini F, Pompon J, Garrett WS, Truong DT, Dabire RK, et al. 2016. The reproductive tracts of two malaria vectors are populated by a core microbiome and by gender and swarm-enriched microbial biomarkers. Sci. Rep. 6: 24207.   DOI
24 Gao ZM, Xu X, Ruan LW. 2014. Enrichment and characterization of an anaerobic cellulolytic microbial consortium SQD-1.1 from mangrove soil. Appl. Microbiol. Biotechnol. 98: 465-474.   DOI
25 Ramya SL, Venkatesan T, Srinivasa Murthy K, Jalali SK, Verghese A. 2015. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47: 327-336.
26 van Frankenhuyzen K, Liu Y, Tonon A. 2010. Interactions between Bacillus thuringiensis subsp. kurstaki HD-1 and midgut bacteria in larvae of gypsy moth and spruce budworm. J. Invertebr. Pathol. 103: 124-131   DOI
27 Snyman M, Gupta AK, Bezuidenhout CC, Claassens S, van den Berg J. 2016. Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J. Microbiol. Biotechnol 32: 115.   DOI
28 Chen B, The BS, Sun C, Hu S, Lu X, Boland W, et al. 2016. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci. Rep. 6: 29505.   DOI
29 Tokuda G, Yamaoka I, Noda H. 2000. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl. Environ. Microbiol. 66: 2199-2207.   DOI
30 Tang X, Freitak D, Vogel H, Ping L, Shao Y, Cordero EA, et al. 2012. Complexity and variability of gut commensal microbiota in polyphagous lepidopteran larvae. PLoS One 7: e36978.   DOI
31 Pemberton JM, Wynn EC. 1984. Genetic engineering and biological detoxification/degradation of insecticides, pp. 147-168. In Lal R (ed.), Insecticide Microbiology. Springer, Berlin.
32 Dillon RJ, Dillon VM. 2004. The gut bacteria of insects: nonpathogenic interactions. Annu. Rev. Entomol. 49: 71-92.   DOI
33 Qu LY, Lou YH, Fan HW, Ye YX, Huang HJ, Hu MQ, et al. 2013. Two endosymbiotic bacteria, Wolbachia and Arsenophonus, in the brown planthopper Nilaparvata lugens. Symbiosis 61: 47.   DOI
34 Singh A, Singh DP, Tiwari R, Kumar K, Singh RV, Singh S, et al. 2015. Taxonomic and functional annotation of gut bacterial communities of Eisenia foetida and Perionyx excavatus. Microbiol. Res. 175: 48-56.   DOI
35 Douglas AE. 2015. Multiorganismal insects: diversity and function of resident microorganisms. Annu. Rev. Entomol. 60: 17-34.   DOI
36 Indiragandhi P, Anandham R, Madhaiyan M, Poonguzhali S, Kim GH, Saravanan VS, et al. 2007. Cultivable bacteria associated with larval gut of prothiofos-resistant, prothiofossusceptible and field-caught populations of diamondback moth, Plutella xylostella and their potential for, antagonism toward entomopathogenic fungi and host insect nutrition. J. Appl. Microbiol. 103: 2664-2675.   DOI
37 Indiragandhi P, Anandham R, Madhaiyan M, Kim GH, Sa TM. 2008. Cross utilization and expression of outer membrane receptor proteins for siderophores uptake by diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) gut bacteria. FEMS Microbiol. Lett. 287: 27-33.
38 Singh B, Singh K. 2016. Bacillus: as bioremediator agent of major environmental pollutants, pp. 35-55. In Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds.). Bacilli and Agrobiotechnology. Springer, Berlin.
39 Ramya SL, Venkatesan T, Srinivasa Murthy K, Jalali SK, Verghese A. 2016. Detection of carboxylesterase and esterase activity in culturable gut bacterial flora isolated from diamondback moth, Plutella xylostella (Linnaeus), from India and its possible role in indoxacarb degradation. Braz. J. Microbiol. 47: 327-336.   DOI
40 van den Bosch TJ, Welte CU. 2016. Detoxifying symbionts in agriculturally important pest insects. Microb. Biotechnol. 10: 531-540.
41 Garrood WT, Zimmer CT, Gorman KJ, Nauen R, Bass C, Davies TG. 2015. Field-evolved resistance to imidacloprid and ethiprole in populations of brown planthopper Nilaparvata lugens collected from across South and East Asia. Pest Manag. Sci. 72: 140-149.
42 Kikuchi Y. 2009. Endosymbiotic bacteria in insects: their diversity and culturability. Microbes Environ. 24: 195-204.   DOI
43 Min S, Lee SW, Choi BR, Lee SH, Kwon DH. 2014. Insecticide resistance monitoring and correlation analysis to select appropriate insecticides against Nilaparvata lugens (Stal), a migratory pest in Korea. J. Asia Pac. Entomol. 17: 711-716.   DOI
44 Droge S, Limper U, Emtiazi F, Schonig I, Pavlus N, Drzyzga O, et al. 2005. In vitro and in vivo sulfate reduction in the gut contents of the termite Mastotermes darwiniensis and the rosechafer Pachnoda marginata. J. Gen. Appl. Microbiol. 51: 57-64.   DOI
45 Morales-Jimenez J, Zuniga G, Villa-Tanaca L, Hernandez- Rodriguez C. 2009. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb. Ecol. 58: 879-891.   DOI
46 Puinean AM, Denholm I, Millar NS, Nauen R, Williamson MS. 2010. Characterisation of imidacloprid resistance mechanisms in the brown planthopper, Nilaparvata lugens Stål (Hemiptera: Delphacidae). Pest Biochem. Physiol. 97: 129-132.   DOI
47 Hemingway J, Karunaratne SH. 1998. Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med. Vet. Entomol. 12: 1-12.   DOI
48 Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T. 2012. Symbiont-mediated insecticide resistance. Proc. Natl. Acad. Sci. USA 109: 8618-8622.   DOI
49 Xia X, Zheng D, Zhong H, Qin B, Gurr GM, Vasseur L, et al. 2013. DNA sequencing reveals the midgut microbiota of diamondback moth, Plutella xylostella (L.) and a possible relationship with insecticide resistance. PLoS One 8: e68852.   DOI
50 Engel P, Moran NA. 2013. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol. Rev. 37: 699-735.   DOI
51 Jones RT, Bressan A, Greenwell AM, Fierer N. 2011. Bacterial communities of two parthenogenetic aphid species cocolonizing two host plants across the Hawaiian islands. Appl. Environ. Microbiol. 77: 8345-8349.   DOI
52 Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, et al. 2007. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565.   DOI
53 Lin XL, Pan QJ, Tian HG, Douglas AE, Liu TX. 2015. Bacteria abundance and diversity of different life stages of Plutella xylostella (Lepidoptera: Plutellidae), revealed by bacteria culture-dependent and PCR-DGGE methods. Insect Sci. 22: 375-385.   DOI