• Title/Summary/Keyword: molecular distribution

Search Result 1,397, Processing Time 0.025 seconds

Recombinant Human L-ferritin from Saccharomyces cerevisiae: Molecular Characterization and Synthesis of Iron Oxide Nanoparticles (효모에서 생산한 재조합 human L-ferritin의 생화학적 특성 및 나노입자의 철산화물 합성)

  • Kim, Kyung-Suk
    • KSBB Journal
    • /
    • v.26 no.2
    • /
    • pp.119-125
    • /
    • 2011
  • In the synthesis of nanoparticles, much attention has been paid to regulating the particle size. There has been a possible evident that using the central cavity (core) of the protein ferritin has a greatly significant influence on it because the core can generate the nanometer-sized mineral particles of variable metal ions. In this report, recombinant human L-ferritins produced from Saccharomyces cerevisiae were purified and their molecular properties were characterized. The cDNA for human ferritin L chain was also expressed in another host such as Escherichia coli, and the properties of recombinant L-ferritins were compared. From isoelectric focusing experiment, the L-ferritin from the recombinant yeast showed no indication of N-glycosylation. Some post-translational modifications other than N-glycosylation were speculated in the L-ferritins from yeast. A difference was made in the L-ferritins in their iron uptake rates and the initial rate of the L-ferritin from yeast was slightly increased. The reconstitution yield and size distribution of the core minerals were analyzed in the L-ferritins by transmission electron microscopy. The L-ferritin from yeast with higher reconstitution yield (54.5%) showed slightly larger sizes (mean 6.92 nm) with narrower size distribution than the L-ferritin from E. coli. It is, in conclusion, speculated that L-ferritin from yeast is relatively superior to the other, in view of the size of nanoparticle and its relative homogeneity.

Removal of Natural Organic Matter by Mixing Coagulants in Coagulation Process (응집공정에서 혼합응집제 주입에 의한 자연유기물질의 제거)

  • 명복태;우달식;최종현;이윤진;남상호
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.2
    • /
    • pp.60-66
    • /
    • 2001
  • Natural organic matters(NOMs) are found everywhere such as soil, surface and ground waters and consist of both humic and nonhumic components, and their heterogeneith makes each source unique. This study was carried to evaluate the removal characteristics of NOMs by mixing coagulants and the variation of apparent molecular weight distribution(AMWD) in coagulation process. Ratio of optimum coagulants dosage for removal of DOC and turbidity by mixing coagulants was 1.83 mM F $e^{3+}$/mM $Al^{3+}$. DOC removal increased at lower pH. The pH6 control focused on the removal of organic matters could reduce the amount of coagulant consumption by 2 to 3 times based on the pH8.5 of natural water. The dissolved organic matters in the natural water from the mid-stream of Han River were composed of the low molecular weight(LMW,<1 K) of 59.7%, and the medium and high molecular weight(M.HMW, 1~30 K) of 40.3%, respectively. At pH6, the DOC removal efficiencies of LMW(<1 K) and M.HMW(1~30 K) in coagulation process were 27~35%, 62~72%, respectively. The fraction smaller than 1 K was not eliminated to a noticeable degree, while the fraction of 1~30 K was relatively well removed. In conclustion, mixing coagulants were fairly effective in the removal of natural organic matter.r.

  • PDF

Evaluation on the utilization possibility of waste mushroom logs as biomass resource for bioethanol production (바이오에탄올 생산을 위한 바이오매스 자원으로서 버섯골목의 이용 가능성 평가)

  • Lee, Jae-Won;Koo, Bon-Wook;Choi, Joon-Weon;Choi, Don-Ha;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.485-488
    • /
    • 2006
  • In order to investigate the possibility of waste mushroom logs as biomass resource chemical and physical characteristics of normal woods and waste mushroom logs such as crystallinity value, energy consumption, total sugar yield after hydrolysis chemical compounds and molecular weight distribution after acid hydrolysis, were examined. In the results, crystallinity of waste mushroom logs which were three year passed after the inoculation was decreased drastically from 49% to 33% during the cultivation. Lignin contents as chemical compounds of normal woods and waste mushroom logs were 21.07% and 18.78%, respectively. By the results of measurement of energy consumption, the size reduction of normal woods required a significantly higher energy than that of waste mushroom logs. In the hydrolysis, total sugar yield by enzyme and acid hydrolysis were high in waste mushroom logs(53% 57.5%) than in normal woods(42.9%, 47.17%). According to the molecular weight distribution using GPC, low molecular weight compounds were distributed in waste mushroom logs. Based on these results, waste mushroom logs have enough potential as material for developing alternative energy because of easily conversion to sugar by various hydrolysis methods and requirement of low energy consumption during size reduction.

  • PDF

Evaluation of Molecular Weight Distribution, Pasting and Functional Properties, and Enzyme Resistant Starch Content of Acid-modified Corn Starches

  • Koksel, Hamit;Ozturk, Serpil;Kahraman, Kevser;Basman, Arzu;Ozbas, Ozen Ozboy;Ryu, Gi-Hyung
    • Food Science and Biotechnology
    • /
    • v.17 no.4
    • /
    • pp.755-760
    • /
    • 2008
  • The aim of this study was to produce resistant starch preparations from acid-modified com starches prepared at various hydrolysis levels (0.5-4.0 hr). Effect of autoclaving cycles on resistant starch (RS) formation was investigated. Molecular weight distribution, pasting and functional properties of acid-modified com starches were determined. For RS formation native and acid-modified starch samples were gelatinized and autoclaved (1 or 2 cycles). While native and acid-modified starches did not contain any RS, the levels increased to 9.0-13.5% as a result of storage at $95^{\circ}C$ after first autoclaving cycle. Second autoclaving cycle together with storage at $95^{\circ}C$ brought final RS contents of the samples incubated at 4 and $95^{\circ}C$ after the first cycle to comparable level. As acid modification level increased, the amount of high molecular weight fractions decreased, resulting in significant decreases in viscosities (p<0.05). The samples produced in this study had low emulsion stability and capacity values.

Investigation of Temperature-Dependent Microscopic Morphological Variation of PEEK Powder for a 3D Printer using Dissipative Particle and Molecular Dynamics Simulations (소산입자동역학과 분자동역학을 이용한 3D 프린터용 PEEK 분말에 대한 온도에 따른 미시적 구조변화에 대한 연구)

  • Kim, Namwon;Yi, Taeil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.5
    • /
    • pp.117-122
    • /
    • 2018
  • 3D printing technology and its applications have grown rapidly in academia and industry. We consider a 3D printing system designed for the selective laser sintering (SLS) method, which is one of the powder bed fusion (PBF) techniques to build up the final product by layering sintered powder slices. Thermal distortion of printing products is a critical challenge in 3D printing. This study investigates temperature-dependent conformational behaviors of 3D printed samples of sintered poly-ether-ether-ketone (PEEK) powders using molecular dynamics simulations. The wear and chemical resistance properties of PEEK are understood, as it is a well-known biocompatible material used for implants. However, studies on physical phenomena at nanoscale in PEEK are rarely published in public. We simulate dissipative particle dynamics to elucidate how a cavity regime forms in PEEK at different system temperatures. We demonstrate how PEEK structures deform subject to the system temperature distribution.

Coil-to-globule transition of thermo-responsive γ-substituted poly (ɛ-caprolactone) in water: A molecular dynamics simulation study

  • Koochaki, Amin;Moghbeli, Mohammad Reza;Nikkhah, Sousa Javan
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1313-1319
    • /
    • 2018
  • The coil-to-globule behavior of poly{${\gamma}$-2-[2-(2methoxyethoxy)ethoxy]ethoxy-3-caprolactone} (PMEEECL) as a ${\gamma}$-substituted poly (${\varepsilon}$-caprolactone) was investigated via atomistic molecular dynamics (MD) simulation. For this purpose, radius of gyration, end-to-end distance and radial distribution function of the chain in the presence of water were calculated. Consequently, the lower critical solution temperature (LCST) of PMEEECL chain at which the coil-to-globule transition takes place, was determined in each calculated parameter curve. The simulation results indicated that the LCST of PMEEECL was occurred at close to 320 K, which is in a good agreement with previous experimental results. Additionally, the appearance of sudden change in both Flory-Huggins interaction parameter (${\chi}$) and interaction energy between the PMEEECL chain and water molecules at about 320 K confirmed the calculated LCST result. The radial distribution function (RDF) results showed that the affinity of the PMEEECL side chain to water molecules is lower than its backbone.

Molecular Size Distribution and Spectroscopic Characterization of Humic and Fulvic Acids Extracted from Soils in Different Depth (깊이별 토양 부식산의 분자량분포 및 분광학적 특성 규명)

  • Shin, Hyun-Sang;Rhee, Dong-Sock;Chung, Kun-Ho;Lee, Chang-Woo
    • Analytical Science and Technology
    • /
    • v.15 no.4
    • /
    • pp.373-380
    • /
    • 2002
  • Humic and fulvic acids present in soil of different depth were extracted and their characteristics were analyzed as a basic study to evaluate the effect of humic substances on the behaviour of radioactive elements deposited on soil. Molecular size distribution of the humic and fulvic acids was measured by stirred cell ultrafiltration technique and the structural informations were obtained from their UV-Vis., IR and synchronous fluorescence (SyF) spectral analysis. Main molecular size ranges of the soil 1) humic and fulvic acids were 30~100 kDa (46~56%) and 10~30 kDa (33~43%) respectively, and their overall molecular sizes were found to became smaller with increasing the soil depth. Absorptivities measured at 280 nm in the UV-Visible spectra of humic acids were 1.4~1.5 times higher than those of fulvic acids, and increased with increasing the soil depth. SyF spectral data showed two distinct peak components having maximum peak positions of 428 nm (type I) and 498 nm (type II) for the soil humic and fulvic acids. From the analysis of the peak components, it was found that humic molecules are mainly made up of aromatic compounds corresponding to longer wavelength (type II), and the molecular components increased with increasing the soil depth. Analysis of IR spectral data indicated that the humic molecules contain a higher relative concentration of carboxylic groups than those of fulvic molecules, and the carboxylic group contents are seen to increase as the soil depth increase.

Molecular Serotyping of Group B Streptococcus Isolated from the Pregnant Women by Polymerase Chain Reaction and Sequence Analysis (임신부에서 분리된 B군 연구균의 중합효소연쇄반응과 염기서열분석을 통한 혈청형 분석)

  • Oh, Chi Eun;Jang, Hyun Oh;Kim, Nam Hee;Lee, Jina;Choi, Eun Hwa;Lee, Hoan Jong
    • Pediatric Infection and Vaccine
    • /
    • v.16 no.1
    • /
    • pp.47-53
    • /
    • 2009
  • Purpose : This study was performed to investigate the serotype distribution of group B streptococcus (GBS) isolated from pregnant Korean women using molecular methods. Methods : The study materials included 42 GBS isolates obtained from the vagina and anorectum of pregnant women in Goyang, Korea between 2005 and 2006. Four clinical isolates with known serotypes (Ia, Ib, III, and V) were used for validation of molecular serotyping. We used serotype-specific primers for identification of the serotypes (Ia, Ib, III, V, and VI). To determine the ambiguous serotypes by serotype-specific PCR, sequence analysis of the PCR amplicons which had been amplified with GBS-common primers was used. Results : The serotypes determined by the molecular methods agreed with the previously known 4 serotypes (Ia, Ib, III, and V). The serotypes of all 42 isolates were successfully determined by molecular methods. The distribution of the GBS serotype was as follows in order of frequency: serotype III was found in 12 isolates (28.6%), serotype V was found in 11 isolates (26.2%), serotype Ia was found in 11 isolates (26.2%), serotype VI was found in 4 isolates (9.5%), serotype Ib was found in 2 isolates (4.8%), and serotype II was found in 2 isolates (4.8%). Conclusion : Serotypes III, V, and Ia were the most frequently identified serotypes in pregnant Korean women. Molecular serotyping is useful for surveillance of the serotype distribution of GBS in colonized pregnant women and GBS diseases of neonates.

  • PDF

Molecular Dynamics Simulation of Adhesion Processes

  • Cho, Sung-San;Park, Seungho
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.11
    • /
    • pp.1440-1447
    • /
    • 2002
  • Adhesion of a hemispherical tip to the flat surface in nano-structures is simulated using the molecular dynamics technique. The tip and plates are modeled with the Lennard-Jones molecules. The simulation focuses on the deformation of the tip. Detailed descriptions on the evolution of interaction force, the energy dissipation due to adhesion hysteresis, the forma- tion-growth-breakage of adhesive junction as well as the evolution of molecular distribution during the process are presented. The effects of the tip size, the maximum tip approach, the tip temperature, and the affinity between the tip and the mating plate are also discussed.

A Unique Strategy for Recovering Recombinant Proteins from Molecular Farming: Affinity Couture on Engineered Oilbodies

  • Seon, Jeong-Hoon;J.Steven Szarka;Maurice M. Moloney
    • Journal of Plant Biotechnology
    • /
    • v.4 no.3
    • /
    • pp.95-101
    • /
    • 2002
  • Molecular faming has the potential to provide large amounts of recombinant protein for use in diagnostics and as therapeutics. Various strategies have been developed to enhance the expression level, stability, and native folding of recombinant proteins produced in plants. Few investigations into the subcellular distribution of recombinant proteins within plant cells have been published despite the potential to increase the expression level and impact the purification process. This review article discusses the current strategies used for targeting recombinant proteins to various subcellular locations and the advantages of targeting to seed oil bodies for molecular farming applications. Specifically, the affinity capture of antibodies using recombinant oilbodies is discussed.