Browse > Article
http://dx.doi.org/10.1016/j.cap.2018.07.011

Coil-to-globule transition of thermo-responsive γ-substituted poly (ɛ-caprolactone) in water: A molecular dynamics simulation study  

Koochaki, Amin (Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering, Iran University of Science and Technology)
Moghbeli, Mohammad Reza (Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering, Iran University of Science and Technology)
Nikkhah, Sousa Javan (Smart Polymers and Nanocomposites Research Group, School of Chemical Engineering, Iran University of Science and Technology)
Abstract
The coil-to-globule behavior of poly{${\gamma}$-2-[2-(2methoxyethoxy)ethoxy]ethoxy-3-caprolactone} (PMEEECL) as a ${\gamma}$-substituted poly (${\varepsilon}$-caprolactone) was investigated via atomistic molecular dynamics (MD) simulation. For this purpose, radius of gyration, end-to-end distance and radial distribution function of the chain in the presence of water were calculated. Consequently, the lower critical solution temperature (LCST) of PMEEECL chain at which the coil-to-globule transition takes place, was determined in each calculated parameter curve. The simulation results indicated that the LCST of PMEEECL was occurred at close to 320 K, which is in a good agreement with previous experimental results. Additionally, the appearance of sudden change in both Flory-Huggins interaction parameter (${\chi}$) and interaction energy between the PMEEECL chain and water molecules at about 320 K confirmed the calculated LCST result. The radial distribution function (RDF) results showed that the affinity of the PMEEECL side chain to water molecules is lower than its backbone.
Keywords
${\gamma}$-Substituted poly (${\varepsilon}$-caprolactone); Molecular dynamics (MD) simulation; LCST; Coil-to-globule transition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M.R. Islam, Y. Gao, X. Li, M.J. Serpe, Responsive polymers for biosensing and protein delivery, J. Mater. Chem. B 2 (2014) 2444-2451.
2 K. Shimizu, H. Fujita, E. Nagamori, Oxygen plasma‐treated thermoresponsive polymer surfaces for cell sheet engineering, Biotechnol. Bioeng. 106 (2010) 303-310.
3 N.A. Jalili, M. Muscarello, A.K. Gaharwar, Nanoengineered thermoresponsive magnetic hydrogels for biomedical applications, Bioeng. Transl. Med. 1 (2016) 297-305.   DOI
4 S.R. Abulateefeh, S.G. Spain, J.W. Aylott, W.C. Chan, M.C. Garnett, C. Alexander, Thermoresponsive polymer colloids for drug delivery and cancer therapy, Macromol. Biosci. 11 (2011) 1722-1734.   DOI
5 A. Gandhi, A. Paul, S.O. Sen, K.K. Sen, Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications, Asian J. Pharm. Sci. 10 (2015) 99-107.   DOI
6 E. Autieri, E. Chiessi, A. Lonardi, G. Paradossi, M. Sega, Conformation and dynamics of poly(N-isopropyl acrylamide) trimers in water: a molecular dynamics and metadynamics simulation study, J. Phys. Chem. B 115 (2011) 5827-5839.   DOI
7 J. Chen, M. Liu, H. Gong, Y. Huang, C. Chen, Synthesis and self-assembly of thermoresponsive PEG-b-PNIPAM-b-PCL ABC triblock copolymer through the combination of atom transfer radical polymerization, ring-opening polymerization, and click chemistry, J. Phys. Chem. B 115 (2011) 14947-14955.   DOI
8 Y. Cheng, J. Hao, L.A. Lee, M.C. Biewer, Q. Wang, M.C. Stefan, Thermally controlled release of anticancer drug from self-assembled ${\gamma}$-substituted amphiphilic poly(${\varepsilon}$- caprolactone) micellar nanoparticles, Biomacromolecules 13 (2012) 2163-2173.   DOI
9 M. Gou, X. Zheng, K. Men, J. Zhang, L. Zheng, X. Wang, F. Luo, Y. Zhao, X. Zhao, Y. Wei, Z. Qian, Poly(${\varepsilon}$-caprolactone)/Poly(ethylene glycol)/Poly(${\varepsilon}$-caprolactone) nanoparticles: preparation, characterization, and application in doxorubicin delivery, J. Phys. Chem. B 113 (2009) 12928-12933.   DOI
10 J. Hao, J. Servello, P. Sista, M.C. Biewer, M.C. Stefan, Temperature-sensitive aliphatic polyesters: synthesis and characterization of ${\gamma}$-substituted caprolactone monomers and polymers, J. Mater. Chem. 21 (2011) 10623-10628.   DOI
11 T.E. De Oliveira, D. Mukherji, K. Kremer, P.A. Netz, Effects of stereochemistry and copolymerization on the LCST of PNIPAm, J. Chem. Phys. 146 (2017) 034904.   DOI
12 E.A. Rainbolt, K.E. Washington, M.C. Biewer, M.C. Stefan, Towards smart polymeric drug carriers: self-assembling ${\gamma}$-substituted polycaprolactones with highly tunable thermoresponsive behavior, J. Mater. Chem. B 1 (2013) 6532-6537.   DOI
13 J. Hao, Y. Cheng, R.J.K. Ranatunga, S. Senevirathne, M.C. Biewer, S.O. Nielsen, Q. Wang, M.C. Stefan, A combined experimental and computational study of the substituent effect on micellar behavior of ${\gamma}$-substituted thermoresponsive amphiphilic poly(${\varepsilon}$-caprolactone)s, Macromolecules 46 (2013) 4829-4838.   DOI
14 M. Alaghemandi, E. Spohr, Molecular dynamics investigation of the thermo-responsive polymer poly(N-isopropylacrylamide), Macromol. Theory Simul. 21 (2012) 106-112.   DOI
15 Z. Luo, J. Jiang, pH-sensitive drug loading/releasing in amphiphilic copolymer PAE-PEG: integrating molecular dynamics and dissipative particle dynamics simulations, J. Contr. Release 162 (2012) 185-193.   DOI
16 L.J. Abbott, A.K. Tucker, M.J. Stevens, Single chain structure of a poly(N-isopropylacrylamide) surfactant in water, J. Phys. Chem. B 119 (2015) 3837-3845.   DOI
17 A.K. Tucker, M.J. Stevens, Study of the polymer length dependence of the single chain transition temperature in syndiotactic poly(N-isopropylacrylamide) oligomers in water, Macromolecules 45 (2012) 6697-6703.   DOI
18 B. Zhao, N.K. Li, Y.G. Yingling, C.K. Hall, LCST behavior is manifested in a single molecule: elastin-like polypeptide (VPGVG)n, Biomacromolecules 17 (2016) 111-118.   DOI
19 G. Paradossi, E. Chiessi, Solution behaviour of poly(N-isopropylacrylamide) stereoisomers in water: a molecular dynamics simulation study, Phys. Chem. Chem. Phys. 19 (2017) 11892-11903.   DOI
20 S.A. Deshmukh, Z. Li, G. Kamath, K.J. Suthar, S.K.R.S. Sankaranarayanan, D.C. Mancini, Atomistic insights into solvation dynamics and conformational transformation in thermo-sensitive and non-thermo-sensitive oligomers, Polymer (United Kingdom) 54 (2013) 210-222.
21 S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 117 (1995) 1-19.   DOI
22 W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin, J. Am. Chem. Soc. 110 (1988) 1657-1666.   DOI
23 W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, R.W. Impey, M.L. Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys. 79 (1983) 926-936.   DOI
24 R.W. Hockney, J.W. Eastwood, Computer simulation using particles, SIAM Rev. 25 (1983) 425-426.   DOI
25 Z.C. Yan, D. Vlassopoulos, Chain dimensions and dynamic dilution in branched polymers, Polymer 96 (2016) 35-44.   DOI
26 S. Javan Nikkhah, M.R. Moghbeli, S.M. Hashemianzadeh, A molecular simulation study on the adhesion behavior of a functionalized polyethylene-functionalized graphene interface, Phys. Chem. Chem. Phys. 17 (2015) 27414-27427.   DOI
27 S.S. Jawalkar, V.S.N. Kothapalli, S.B. Halligudi, M. Sairam, T.M. Aminabhavi, Molecular modeling simulations to predict compatibility of poly(vinyl alcohol) and chitosan blends: a comparison with experiments, J. Phys. Chem. B 111 (2007) 2431-2439.   DOI
28 W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, J. Mol. Graph. 14 (1996) 33-38.   DOI
29 T. Ni, G.H.P. Gao, Y. Xu, M. Yang, Dissipative particle dynamics simulation on the association properties of fluorocarbon-modified polyacrylamide copolymers, Polym. J. 43 (2011) 635-641.   DOI