• Title/Summary/Keyword: molecular biological techniques

Search Result 157, Processing Time 0.027 seconds

Augmenting Plant Immune Responses and Biological Control by Microbial Determinants (새로운 생물적 방제 전략: 미생물 인자 유래 식물면역 유도)

  • Lee, Sang Moo;Chung, Joon-hui;Ryu, Choong-Min
    • Research in Plant Disease
    • /
    • v.21 no.3
    • /
    • pp.161-179
    • /
    • 2015
  • Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

Mass Spectrometry Imaging of Microbes

  • Yang, Hyojik;Goodlett, David R.;Ernst, Robert K.;Scott, Alison J.
    • Mass Spectrometry Letters
    • /
    • v.11 no.3
    • /
    • pp.41-51
    • /
    • 2020
  • Microbes influence many aspects of human life from the environment to health, yet evaluating their biological processes at the chemical level can be problematic. Mass spectrometry imaging (MSI) enables direct evaluation of microbial chemical processes at the atomic to molecular levels without destruction of valuable two-dimensional information. MSI is a label-free method that allows multiplex spatiotemporal visualization of atomic- or molecular-level information of microbial and microberelated samples. As a result, microbial MSI has become an important field for both mass spectrometrists and microbiologists. In this review, basic techniques for microbial MSI, such as ionization methods and analyzers, are explored. In addition, we discuss practical applications of microbial MSI and various data-processing techniques.

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data

  • Do, Jin Hwan;Choi, Dong-Kug
    • Molecules and Cells
    • /
    • v.25 no.2
    • /
    • pp.279-288
    • /
    • 2008
  • The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.

Mathematical Evaluation of Response Behaviors of Indicator Organisms to Toxic Materials (지표생물의 독성물질 반응 행동에 대한 수리적 평가)

  • Chon, Tae-Soo;Ji, Chang-Woo
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.4
    • /
    • pp.231-245
    • /
    • 2008
  • Various methods for detecting changes in response behaviors of indicator specimens are presented for monitoring effects of toxic treatments. The movement patterns of individuals are quantitatively characterized by statistical (i.e., ANOVA, multivariate analysis) and computational (i.e., fractal dimension, Fourier transform) methods. Extraction of information in complex behavioral data is further illustrated by techniques in ecological informatics. Multi-Layer Perceptron and Self-Organizing Map are applied for detection and patterning of response behaviors of indicator specimens. The recent techniques of Wavelet analysis and line detection by Recurrent Self-Organizing Map are additionally discussed as an efficient tool for checking time-series movement data. Behavioral monitoring could be established as new methodology in integrative ecological assessment, tilling the gap between large-scale (e.g., community structure) and small-scale (e.g., molecular response) measurements.

Nuclear Medicine Imaging Instrumentations for Molecular Imaging (분자영상 획득을 위한 핵의학 영상기기)

  • Chung, Yong-Hyun;Song, Tae-Yong;Choi, Yong
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.2
    • /
    • pp.131-139
    • /
    • 2004
  • Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging.

Small-molecule probes elucidate global enzyme activity in a proteomic context

  • Lee, Jun-Seok;Yoo, Young-Hwa;Yoon, Chang No
    • BMB Reports
    • /
    • v.47 no.3
    • /
    • pp.149-157
    • /
    • 2014
  • The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.

Phytoplasma Associated with Yellowing Disease of Washingtonia sp. in Kuwait

  • Al-Awadhi, Husain A.;Montasser, Magdy S.;Suleman, Patrice;Hanif, Asma M.
    • The Plant Pathology Journal
    • /
    • v.17 no.6
    • /
    • pp.329-335
    • /
    • 2001
  • Yellowing disease of palms caused by phytoplasma is spreading in the Arabian Gulf region. Surveys were conducted to determine the occurrence of the disease. Electron and fluorescence microscopy, and polymerase chain reaction (PCR) techniques were used to detect the phytoplasma associated with the yellowing disease of ornamental palm Washingtonia sp. grown in Kuwait. An accumulation of phytoplasmal DNA was observed by fluorescence microscopy in phloem tissues of diseased palms. Electron microscopy showed that phytoplasma cells were primarily confined to the phloemsieve elements of tissue samples collected from infected mature palms in the field. The pathogen was identified on the basis of molecular analysis using universal and specific nested primers in PCR amplifications. Prokaryotic 16S rDNA gene was detected in amplified PCR products. Nested PCR resulted in DNA amplification of 1.2 kbp fragment. This is the first report of a phytoplasmal rDNA gene identified from the putative causal pathogen of yellows in ornamental palms in the Arabian Gulf region.

  • PDF

Magnetic Resonance Imaging Meets Fiber Optics: a Brief Investigation of Multimodal Studies on Fiber Optics-Based Diagnostic / Therapeutic Techniques and Magnetic Resonance Imaging

  • Choi, Jong-ryul;Oh, Sung Suk
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.218-228
    • /
    • 2021
  • Due to their high degree of freedom to transfer and acquire light, fiber optics can be used in the presence of strong magnetic fields. Hence, optical sensing and imaging based on fiber optics can be integrated with magnetic resonance imaging (MRI) diagnostic systems to acquire valuable information on biological tissues and organs based on a magnetic field. In this article, we explored the combination of MRI and optical sensing/imaging techniques by classifying them into the following topics: 1) functional near-infrared spectroscopy with functional MRI for brain studies and brain disease diagnoses, 2) integration of fiber-optic molecular imaging and optogenetic stimulation with MRI, and 3) optical therapeutic applications with an MRI guidance system. Through these investigations, we believe that a combination of MRI and optical sensing/imaging techniques can be employed as both research methods for multidisciplinary studies and clinical diagnostic/therapeutic devices.

Organic matrix-free imaging mass spectrometry

  • Kim, Eunjin;Kim, Jisu;Choi, Inseong;Lee, Jeongwook;Yeo, Woon-Seok
    • BMB Reports
    • /
    • v.53 no.7
    • /
    • pp.349-356
    • /
    • 2020
  • Mass spectrometry (MS) is an ideal tool for analyzing multiple types of (bio)molecular information simultaneously in complex biological systems. In addition, MS provides structural information on targets, and can easily discriminate between true analytes and background. Therefore, imaging mass spectrometry (IMS) enables not only visualization of tissues to give positional information on targets but also allows for molecular analysis of targets by affording the molecular weights. Matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) MS is particularly effective and is generally used for IMS. However, the requirement for an organic matrix raises several limitations that get in the way of accurate and reliable images and hampers imaging of small molecules such as drugs and their metabolites. To overcome these problems, various organic matrix-free LDI IMS systems have been developed, mostly utilizing nanostructured surfaces and inorganic nanoparticles as an alternative to the organic matrix. This minireview highlights and focuses on the progress in organic matrix-free LDI IMS and briefly discusses the use of other IMS techniques such as desorption electrospray ionization, laser ablation electrospray ionization, and secondary ion mass spectrometry.

Biological stability in the ozone and peroxone pretreatment systems in river water (하천수 내 생물학적 안정성에 따른 유기물 특성변화와 오존산화기반 전처리 연구)

  • Park, Se-Hee;Noh, Jin-Hyung;Park, Ji-Won;Maeng, Sung-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.2
    • /
    • pp.159-168
    • /
    • 2018
  • Climate change is believed to increase the amount of dissolved organic matter in surface water, as a result of the release of bulk organic matter, which make difficult to achieve a high quality of drinking water via conventional water treatment techniques. Therefore, the natural water treatment techniques, such as managed aquifer recharge (MAR), can be proposed as a alternative method to improve water quality greatly. Removal of bulk organic matter using managed aquifer recharge system is mainly achieved by biodegradation. Biodegradable dissolved organic carbon (BDOC) and assimilable organic carbon (AOC) can be used as water quality indicators for biological stability of drinking water. In this study, we compared the change of BDOC and AOC with respect to pretreatment methods (i.e., ozone or peroxone). The oxidative pretreatment can transform the recalcitrant organic matter into readily biodegradable one (i.e., BDOC and AOC). We also investigated the differences of organic matter characteristics between BDOC and AOC. We observed the decreases in dissolved organic carbon (DOC) and the tryptophan-like fluorescence intensities. Liquid chromatographic - organic carbon detection (LC-OCD) analysis also showed the reduction of the low molecular weight (LMW) fraction (15% removed, less than 500 Da), which is known to be easily biodegradable, and the biopolymers, high molecular weight fractions (66%). Therefore, BDOC consists of a broad range of organic matter characteristics with respect to molecular weight. In AOC, low molecular weight organic matter and biopolymers fraction was reduced by 11 and 6%, respectively. It confirmed that biodegradation by microorganisms as the main removal mechanism in AOC, while BDOC has biodegradation by microorganism as well as the sorption effects from the sand. $O_3$ and $O_3+H_2O_2$ were compared with respect to biological stability and dissolved organic matter characteristics. BDOC and AOC were determined to be about 1.9 times for $O_3$ and about 1.4 times for $O_3+H_2O_2$. It was confirmed that $O_3$ enhanced the biodegradability by increasing LMW dissolved organic matter.