Browse > Article

Clustering Approaches to Identifying Gene Expression Patterns from DNA Microarray Data  

Do, Jin Hwan (Bio-Food and Drug Research Center, Konkuk University)
Choi, Dong-Kug (Department of Biotechnology, Konkuk University)
Abstract
The analysis of microarray data is essential for large amounts of gene expression data. In this review we focus on clustering techniques. The biological rationale for this approach is the fact that many co-expressed genes are co-regulated, and identifying co-expressed genes could aid in functional annotation of novel genes, de novo identification of transcription factor binding sites and elucidation of complex biological pathways. Co-expressed genes are usually identified in microarray experiments by clustering techniques. There are many such methods, and the results obtained even for the same datasets may vary considerably depending on the algorithms and metrics for dissimilarity measures used, as well as on user-selectable parameters such as desired number of clusters and initial values. Therefore, biologists who want to interpret microarray data should be aware of the weakness and strengths of the clustering methods used. In this review, we survey the basic principles of clustering of DNA microarray data from crisp clustering algorithms such as hierarchical clustering, K-means and self-organizing maps, to complex clustering algorithms like fuzzy clustering.
Keywords
Co-Expression; DNA Microarray; Fuzzy Clustering; Hierarchical Clustering; K-means; Self-organizing Map;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 28  (Related Records In Web of Science)
연도 인용수 순위
1 Woolf, P.J., and Wang, Y. (2000). A fuzzy logic approach to analyzing gene expression data. Physiol. Genomics 3, 9-15   DOI
2 Wu, F.X., Zhang, W.J., and Kusalik, A.J. (2006). Determination of the minimum number of microarray experiments for discovery of gene expression patterns. BMC Bioinformatics 7 (Suppl. 4), S13   DOI
3 Belacel, N., Cuperlovic-Culf, M., Laflamme, M., and Ouellette, R. (2004). Fuzzy J-means and VNS methods for clustering genes from microarray data. Bioinformatics 20, 1690-1701   DOI   ScienceOn
4 Boutros, P.C., and Okey, A.B. (2005). Unsupervised pattern recognition: an introduction to the whys and wherefores of clustering microarray data. Brief. Bioinform. 6, 331-343   DOI   ScienceOn
5 Dudoit, S., and Fridlyand, J. (2002). A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol. 3, research0036
6 Heyer, L.J., Kruglyak, S., and Yooseph, S. (1999). Exploring expression data: identification and analysis of coexpressed genes. Genome Res. 9, 1106-1115   DOI
7 Lu, Y., Lu, S., Fotouhi, F., Deng, Y., and Brown, S.J. (2004b). Incremental genetic K-means algorithm and its application in gene expression data analysis. BMC Bioinformatics 5, 172   DOI
8 Macnaughton-Smith, P., Williams, W.T., Dale, M.B., and Mockett, L.G. (1964). Dissimilarity analysis: a new technic of hierarchical subdivision. Nature 202, 1034-1035   DOI   ScienceOn
9 Sheng, Q., Moreau, Y., and De Moor, B. (2003). Biclustering microarray data by Gibbs sampling. Bioinformatics 19 (Suppl. 2), ii196-ii205
10 Slonim, D.K. (2002). From patterns to pathways: gene expression data analysis comes of age. Nat. Genet. 32 (Suppl. 2), 502-508   DOI   ScienceOn
11 Van der Laan, M., Pollard, K.S., and Bryan, J. (2003). A new partitioning around medoids algorithm. J. Stat. Comput. Simul. 73, 575-584   DOI
12 Kim, K., Zhang, S., Jiang, K., Cai, L., Lee, I.-B., Feldman, L.J., and Huang, H. (2007). Measuring similarities between gene expression profiles through new data transformation. BMC Bioinformatics 8, 29   DOI
13 Kohonen, T. (1990). The self-organizing map. Proc. IEEE 78, 1464-1479
14 Gasch, A.U., and Eisen, M.B. (2002). Exploring the conditional co-regulation of yeast gene expression through fuzzy Kmeans clustering. Genome Biol. 3, 1-22
15 Fowlkes, E.B., and Mallows, C.L. (1983). A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78, 553-584   DOI
16 Wen, X., Fuhrman, S., Michaels, G.S., Carr, D.B., Smith, S., Barker, J.L., and Somogyi, R. (1998). Large-scale temporal gene expression mapping of central nervous system development. Proc. Natl. Acad. Sci. USA 95, 334-339
17 Hardin, J., Mitani, A., Hicks, L., and VanKoten, B. (2007). A robust measure of correlation between two genes on a microarray. BMC Bioinformatics 8, 220   DOI
18 Alizadeh, A.A., Eisen, M.B., Davis, R.E., Ma, C., Lossos, I.S., Rosenwald, A., Boldrick, J.C., Sabet, H., Tran, T., Yu, X., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403, 503-511   DOI   ScienceOn
19 Chipman, H. (2006). Hybrid hierarchical clustering with applications to microarray data. Biostatistics 7, 286-301   DOI   ScienceOn
20 Fu, L., and Medico, E. (2007). FLAME, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinformatics 8, 3   DOI
21 Tan, P.N., Steinbach, M., and Kumar, V. (2005). Introduction to Data Mining (Boston: Addison-Wesley)
22 Bezdek, J.C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms (New York: Plenum Press)
23 Do, J.H., and Choi, D.K. (2006). Normalization of microarray data: single-labeled and dual-labeled arrays. Mol. Cells 22, 254-261
24 Hsu, A.L., Tang, S.-L., and Halgamuge, S.K. (2003). An unsupervised hierarchical dynamic self-organizing approach to cancer class discovery and marker gene identification in microarray data. Bioinformatics 19, 2131-2140   DOI   ScienceOn
25 Azuaje, F. (2003). Clustering-based approaches to discovering and visualizing mciroarray data patterns. Brief. Bioinform. 4, 31-42   DOI   ScienceOn
26 Balasubramaniyan, R., Hullermeier, E., Weskamp, N., and Kamper, J. (2005). Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 21, 1069-1077   DOI   ScienceOn
27 Xing, B., Greenwood, C.M., and Bull, S.B. (2007). A hierarchical clustering method for estimating copy number variation. Biostatistics 8, 632-653   DOI   ScienceOn
28 Kaufman, L., and Rousseeuw, P. (1990). Finding groups in data (New York, NY: Wiley)
29 Su, M., and Chang, H. (2001). A new model of self-organizing neural networks and its application in data projection. IEEE Trans. Neural Netw. 12, 153-158   DOI   ScienceOn
30 Wang, J., Bo, T.H., Jonassen, I., and Hovig, E. (2003). Tumor classification and marker gene prediction by feature selection and fuzzy c-means clustering using microarray data. BMC Bioinformatics 4, 60   DOI
31 Jain, A.K., and Bubes, R.C. (1988). Algorithms for Clustering Data (NJ: Prentice Hall, Englewood Cliffs)
32 Friedman, N., Linial, M., Nachman, I., and Pe'er, D. (2000). Using Bayesian networks to analyze expression data. J. Comput. Biol. 7, 601-620   DOI   ScienceOn
33 Gersho, A., and Gray, R. (1992). Vector Quantization and Signal Compression (Boston USA: Kluwer Academic Publishers)
34 Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaassenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531-537   DOI   ScienceOn
35 Dembele, D., and Kastner, P. (2003). Fuzzy C-means for clustering microarray data. Bioinformatics 19, 973-980   DOI   ScienceOn
36 Eisen, M.B., Spellman, P.T., Brown P.O., and Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863-14868
37 Ikota, H., Kinjo, S., Yokoo, H., and Nakazato, Y. (2006). Systematic immunohistochemical profiling of 378 brain tumors with 37 antibodies using tissue microarray technology. Acta Neuropathol. (Berl) 111, 475-482   DOI
38 Lu, Y., Lu, S., Fotouhi, F., Deng, Y., and Brown, S.J. (2004a). FGKA: a fast genetic K-means clustering algorithm. Proceedings of the 2004 ACM symposium on Applied computing (SAC), Nicosia, Cyprus
39 Ben-Hur, A., Elisseeff, A., and Guyon, I. (2002). A stability based method for discovering structure in clustered data. Pac. Symp. Biocomput. 7, 6-17
40 Jiang, D., Pei, J., and Zhang, A. (2003). Towards interactive exploration of gene expression patterns. ACM SIGKDD Explor Newslett 5, 79-90   DOI
41 Raychaudhuri, S., Sutphin, P.D., Chang, J.T., and Altman, R.B. (2001). Basic microarray analysis: grouping and feature reduction. Trends Biotechnol. 19, 189-193   DOI   ScienceOn
42 Krishna, K., and Narasimha Murty, M. (1999). Genetic K-means algorithm. IEEE Trans. Syst. Man Cybern. Part B 29, 433-439   DOI   ScienceOn
43 Belacel, N., Wang, Q., and Cuperlovic-culf, M. (2006). Clustering methods for microarray gene expression data. Omics 10, 507-531   DOI   ScienceOn
44 Ressom, H., Wang, D., and Natarajan, P. (2003). Adaptive double self-organizing maps for clustering gene expression profiles. Neural Netw. 16, 633-640   DOI   ScienceOn
45 Tseng, G. (2004). A comparative review of gene clustering in expression profile. eighth international conference on control, automation, robotics and vision (ICARCV). 1320-1324
46 Ihmels, J., Friedlander, G.., Bergman, S., Sarig, O., Ziv, Y., and Barkai, N. (2002). Revealing modular organization in the yeast transcriptional network. Nat. Genet. 31, 370-377   DOI