Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.3.264

Small-molecule probes elucidate global enzyme activity in a proteomic context  

Lee, Jun-Seok (Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST))
Yoo, Young-Hwa (Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST))
Yoon, Chang No (Molecular Recognition Research Center, Korea Institute of Science and Technology (KIST))
Publication Information
BMB Reports / v.47, no.3, 2014 , pp. 149-157 More about this Journal
Abstract
The recent dramatic improvements in high-resolution mass spectrometry (MS) have revolutionized the speed and scope of proteomic studies. Conventional MS-based proteomics methodologies allow global protein profiling based on expression levels. Although these techniques are promising, there are numerous biological activities yet to be unveiled, such as the dynamic regulation of enzyme activity. Chemical proteomics is an emerging field that extends these types proteomic profiling. In particular, activity-based protein profiling (ABPP) utilizes small-molecule probes to monitor enzyme activity directly in living intact subjects. In this mini-review, we summarize the unique roles of smallmolecule probes in proteomics studies and highlight some recent examples in which this principle has been applied.
Keywords
Activity-based protein profiling; Fluorescent imaging; Proteomics; Small molecule probes; Systems biology;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Nasheri, N. et al. (2013) Modulation of fatty acid synthase enzyme activity and expression during hepatitis C virus replication. Chem. Biol. 20, 570-582.   DOI   ScienceOn
2 Salisbury, C. M. and Cravatt, B. F. (2007) Activity-based probes for proteomic profiling of histone deacetylase complexes. Proc. Natl. Acad. Sci. U. S. A. 104, 1171-1176.   DOI   ScienceOn
3 Lee, J.-S., Kim, Y. K., Vendrell, M. and Chang, Y. T. (2009) Diversity-oriented fluorescence library approach for the discovery of sensors and probes. Mol. BioSyst. 5, 411-421.   DOI   ScienceOn
4 Vendrell, M., Lee, J.-S. and Chang, Y. T. (2010) Diversity-oriented fluorescence library approaches for probe discovery and development. Curr. Opin. Chem. Biol. 14, 383-389.   DOI   ScienceOn
5 Adam, G. C., Sorensen, E. J. and Cravatt, B. F. (2002) Proteomic profiling of mechanistically distinct enzyme classes using a common chemotype. Nat. Biotechnol. 20, 805-809.   DOI   ScienceOn
6 Berger, A. B., Witte, M. D., Denault, J. B., Sadaghiani, A. M., Sexton, K. M., Salvesen, G. S. and Bogyo, M. (2006) Identification of early intermediates of caspase activation using selective inhibitors and activity-based probes. Mol. Cell 23, 509-521.   DOI   ScienceOn
7 Vickers, C. J., Gonzalez-Paez, G. E. and Wolan, D. W. (2013) Selective detection of caspase-3 versus caspase-7 using activity-based probes with key unnatural amino acids. ACS Chem. Biol. 8, 1558-1566.   DOI   ScienceOn
8 Borodovsky, A., Ovaa, H., Kolli, N., Gan-Erdene, T., Wilkinson, K. D., Ploegh, H. L. and Kessler, B. M. (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem. Biol. 9, 1149-1159.   DOI   ScienceOn
9 Sieber, S. A., Niessen, S., Hoover, H. S. and Cravatt, B. F. (2006) Proteomic profiling of metalloprotease activities with cocktails of active-site probes. Nat. Chem. Biol. 2, 274-281.   DOI   ScienceOn
10 Paulick, M. G. and Bogyo, M. (2011) Development of activity-based probes for cathepsin X. ACS Chem. Biol. 6, 563-572.   DOI   ScienceOn
11 Lee, J. and Bogyo, M. (2010) Development of near-infrared fluorophore (NIRF)-labeled activity-based probes for in vivo imaging of legumain. ACS Chem. Biol. 5, 233-243.   DOI   ScienceOn
12 Edgington, L. E., Verdoes, M., Ortega, A., Withana, N. P., Lee, J., Syed, S., Bachmann, M. H., Blum, G. and Bogyo, M. (2013) Functional imaging of legumain in cancer using a new quenched activity-based probe. J. Am. Chem. Soc. 135, 174-182.   DOI   ScienceOn
13 Colman, R. F. (1983) Affinity Labeling of Purine Nucleotide Sites in Proteins. Annu. Rev. Biochem. 52, 67-91.   DOI   ScienceOn
14 Ponder, E. L., Albrow, V. E., Leader, B. A., Bekes, M., Mikolajczyk, J., Fonovic, U. P., Shen, A., Drag, M., Xiao, J., Deu, E., Campbell, A. J., Powers, J. C., Salvesen, G. S. and Bogyo, M. (2011) Functional characterization of a SUMO deconjugating protease of Plasmodium falciparum using newly identified small molecule inhibitors. Chem. Biol. 18, 711-721.   DOI   ScienceOn
15 Martin, B. R. and Cravatt, B. F. (2009) Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135-138.   DOI   ScienceOn
16 Li, X., Foley, E. A., Molloy, K. R., Li, Y., Chait, B. T. and Kapoor, T. M. (2012) Quantitative Chemical Proteomics Approach To Identify Post-translational Modification-Mediated Protein-Protein Interactions. J. Am. Chem. Soc. 134, 1982-1985.   DOI   ScienceOn
17 Shi, H., Zhang, C.-J., Chen, G. Y. J. and Yao, S. Q. (2012) Cell-based proteome profiling of potential Dasatinib targets by use of affinity-based probes. J. Am. Chem. Soc. 134, 3001-3014.   DOI   ScienceOn
18 Son, J., Lee, J.-J., Lee, J.-S., Schuller, A. and Chang, Y. T. (2010) Isozyme-specific fluorescent inhibitor of glutathione s-transferase omega 1. ACS Chem. Biol. 5, 449-453.   DOI   ScienceOn
19 Kim, Y. K., Lee, J. S., Bi, X., Ha, H. H., Ng, S. H., Ahn, Y. H., Lee, J. J., Wagner, B. K., Clemons, P. A. and Chang, Y. T. (2011) The binding of fluorophores to proteins depends on the cellular environment. Angew. Chem. Int. Edit. 123, 2813-2815.   DOI   ScienceOn
20 Kaschani, F., Clerc, J., Krahn, D., Bier, D., Hong, T. N., Ottmann, C., Niessen, S., Colby, T., van der Hoorn, R. A. and Kaiser, M. (2012) Identification of a selective, activity-based probe for glyceraldehyde 3-phosphate dehydrogenases. Angew. Chem. Int. Edit. 51, 5230-5233.   DOI   ScienceOn
21 Lee, J. and Bogyo, M. (2013) Target deconvolution techniques in modern phenotypic profiling. Curr. Opin. Chem. Biol. 17, 118-126.   DOI   ScienceOn
22 Kim, Y. K., Lee, J. K., Lee, J.-S., Yoon, C. N. and Chang, Y. T. (2011) Site-selective labeling at Cys302 of aldehyde dehydrogenase unveils a selective mitochondrial stain. Mol. BioSyst. 7, 2375-2378.   DOI   ScienceOn
23 Strebhardt, K. and Ullrich, A. (2008) Paul Ehrlich's magic bullet concept: 100 years of progress. Nat. Rev. Cancer 8, 473-480.   DOI   ScienceOn
24 Su, Y., Ge, J., Zhu, B., Zheng, Y. G., Zhu, Q. and Yao, S. Q. (2013) Target identification of biologically active small molecules via in situ methods. Curr. Opin. Chem. Biol. 17, 768-775.   DOI   ScienceOn
25 Lee, J. S., Kim, Y. K., Kim, H. J., Hajar, S., Tan, Y. L., Kang, N. Y., Ng, S. H., Yoon, C. N. and Chang, Y. T. (2012) Identification of cancer cell-line origins using fluorescence image-based phenomic screening. PLoS ONE 7, e32096.   DOI   ScienceOn
26 Lee, J.-J., Son, J., Ha, H.-H. and Chang, Y. T. (2011) Fluorescent labeling of membrane proteins on the surface of living cells by a self-catalytic glutathione S-transferase omega 1 tag. Mol. BioSyst. 7, 1270-1276.   DOI   ScienceOn
27 Rhee, H. W., Zou, P., Udeshi, N. D., Martell, J. D., Mootha, V. K., Carr, S. A. and Ting, A. Y. (2013) Proteomic mapping of mitochondria in living cells via spatially restricted enzymatic tagging. Science 339, 1328-1331.   DOI   ScienceOn
28 Carpenter, A. E. (2007) Software opens the door to quantitative imaging. Nat. Methods 4, 120-121.   DOI   ScienceOn
29 Chang, S. L. and Cho, B. R. (2013) Two-photon probes for biomedical applications. BMB Rep. 46, 188-194.   DOI   ScienceOn
30 Wei, D., Bu, Z., Yu, A. and Li, F. (2011) Identification of a lead small-molecule inhibitor of anthrax lethal toxin by using fluorescence-based high-throughput screening. BMB Rep. 44, 811-815.   DOI   ScienceOn
31 Walsh, D. P. and Chang, Y. T. (2006) Chemical genetics. Chem. Rev. 106, 2476-2530.   DOI   ScienceOn
32 International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409, 860-921.   DOI   ScienceOn
33 International Human Genome Sequencing Consortium (2004) Finishing the euchromatic sequence of the human genome. Nature 431, 931-945.   DOI   ScienceOn
34 Mohamed, S. and Syed, B. A. (2013) Commercial prospects for genomic sequencing technologies. Nat. Rev. Drug. Discov. 12, 341-342.   DOI   ScienceOn
35 Tonge, R., Shaw, J., Middleton, B., Rowlinson, R., Rayner, S., Young, J., Pognan, F., Hawkins, E., Currie, I. and Davison, M. (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1, 377-396.   DOI
36 Unlu, M., Morgan, M. E. and Minden, J. S. (1997) Difference gel electrophoresis, a single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071-2077.   DOI   ScienceOn
37 Zhu, H. and Snyder, M. (2001) Protein arrays and microarrays. Curr. Opin. Chem. Biol. 5, 40-45.   DOI   ScienceOn
38 Simpson, D. C. and Smith, R. D. (2005) Combining capillary electrophoresis with mass spectrometry for applications in proteomics. Electrophoresis 26, 1291-1305.   DOI   ScienceOn
39 Michaud, G. A., Salcius, M., Zhou, F., Bangham, R., Bonin, J., Guo, H., Snyder, M., Predki, P. F. and Schweitzer, B. I. (2003) Analyzing antibody specificity with whole proteome microarrays. Nat. Biotechnol. 21, 1509-1512.   DOI   ScienceOn
40 Sanders, G. H. W. and Manz, A. (2000) Chip-based microsystems for genomic and proteomic analysis. Trac-Trend. Anal. Chem. 19, 364-378.   DOI   ScienceOn
41 Simo, C., Cifuentes, A. and Kasicka, V. (2013) Capillary electrophoresis-mass spectrometry for Peptide analysis: target-based approaches and proteomics/peptidomics strategies. Methods. Mol. Biol. 984, 139-151.   DOI   ScienceOn
42 Aebersold, R. and Mann, M. (2003) Mass spectrometry-based proteomics. Nature 422, 198-207.   DOI   ScienceOn
43 Choudhary, C. and Mann, M. (2010) Decoding signalling networks by mass spectrometry-based proteomics. Nat. Rev. Mol. Cell Biol. 11, 427-439.   DOI   ScienceOn
44 Gygi, S. P., Rist, B., Gerber, S. A., Turecek, F., Gelb, M. H. and Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994-999.   DOI   ScienceOn
45 Ong, S.-E. and Mann, M. (2005) Mass spectrometry-based proteomics turns quantitative. Nat. Chem. Biol. 1, 252-262.   DOI   ScienceOn
46 Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C. A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R. and Mann, M. (2008) SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353-364.   DOI   ScienceOn
47 Drahl, C., Cravatt, B. F. and Sorensen, E. J. (2005) Protein-Reactive Natural Products. Angew. Chem. Int. Edit. 44, 5788-5809.   DOI   ScienceOn
48 Geiger, T., Cox, J., Ostasiewicz, P., Wisniewski, J. R. and Mann, M. (2010) Super-SILAC mix for quantitative proteomics of human tumor tissue. Nat. Methods 7, 383-385.   DOI   ScienceOn
49 Weerapana, E., Simon, G. M. and Cravatt, B. F. (2008) Disparate proteome reactivity profiles of carbon electrophiles. Nat. Chem. Biol. 4, 405-407.   DOI   ScienceOn
50 Pace, N. J. and Weerapana, E. (2013) Diverse Functional Roles of Reactive Cysteines. ACS Chem. Biol. 8, 283-296.   DOI   ScienceOn
51 Cravatt, B. F. and Sorensen, E. J. (2000) Chemical strategies for the global analysis of protein function. Curr. Opin. Chem. Biol. 4, 663-668.   DOI   ScienceOn
52 Fonovic M, Bogyo M (2008) Activity-based probes as a tool for functional proteomic analysis of proteases. Expert. Rev. Proteomics 5, 721-730.   DOI   ScienceOn
53 Cravatt, B. F., Wright, A. T. and Kozarich, J. W. (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu. Rev. Biochem. 77, 383-414.   DOI   ScienceOn
54 Evans, M. J. and Cravatt, B. F. (2006) Mechanism-based profiling of enzyme families. Chem. Rev. 106, 3279-3301.   DOI   ScienceOn
55 Liu, Y., Patricelli, M. P. and Cravatt, B. F. (1999) Activity-based protein profiling: The serine hydrolases. Proc. Natl. Acad. Sci. U.S.A. 96, 14694-14699.   DOI
56 Nomura, D. K., Dix, M. M. and Cravatt, B. F. (2010) Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 10, 630-638.   DOI   ScienceOn
57 Khandekar, S. S., Feng, B., Yi, T., Chen, S., Laping, N. and Bramson, N. (2005) A liquid chromatography/mass spectrometry-based method for the selection of ATP competitive kinase inhibitors. J. Biomol. Screen 10, 447-455.   DOI
58 Kidd, D., Liu, Y. and Cravatt, B. F. (2001) Profiling serine hydrolase activities in complex proteomes. Biochemistry 40, 4005-4015.   DOI   ScienceOn
59 Mahrus, S. and Craik, C. S. (2005) Selective chemical functional probes of granzymes A and B reveal granzyme B is a major effector of natural killer cell-mediated lysis of target cells. Chem. Biol. 12, 567-577.   DOI   ScienceOn
60 Manning, G., Whyte, D. B., Martinez, R. and Hunter, T. (2002) The protein kinase complement of the human genome. Science 298, 1912-1934.   DOI   ScienceOn
61 Patricelli, M. P., Szardenings, A. K., Liyanage, M., Nomanbhoy, T. K., Wu, M., Weissig, H., Aban, A., Chun, D., Tanner, S. and Kozarich, J. W. (2007) Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46, 350-358.   DOI   ScienceOn
62 Wilke, K. E., Francis, S. and Carlson, E. E. (2012) Activity-Based Probe for Histidine Kinase Signaling. J. Am. Chem. Soc. 134, 9150-9153.   DOI   ScienceOn
63 Grammel, M. and Hang, H. C. (2013) chemical reporters for biological discovery. Nat. Chem. Biol. 9, 475-484.   DOI   ScienceOn
64 Duckworth, B. P., Wilson, D. J., Nelson, K. M., Boshoff, H. I., Barry, C. E. 3rd, and Aldrich, C. C. (2012) Development of a Selective activity-based probe for adenylating enzymes: profiling MbtA involved in siderophore biosynthesis from mycobacterium tuberculosis. ACS. Chem. Biol. 7, 1653-1658.   DOI   ScienceOn
65 Wright, A. T., Song, J. D. and Cravatt, B. F. (2009) A suite of activity-based probes for human cytochrome P450 enzymes. J. Am. Chem. Soc. 131, 10692-10700.   DOI   ScienceOn
66 Siqueira, W. L., Bakkal, M., Xiao, Y., Sutton, J. N. and Mendes, F. M. (2012) Quantitative proteomic analysis of the effect of fluoride on the acquired enamel pellicle. PLoS ONE 7, e42204.   DOI
67 Shen, Y. and Smith, R. D. (2002) Proteomics based on high-efficiency capillary separations. Electrophoresis 23, 3106-3124.   DOI
68 Barglow, K. T. and Cravatt, B. F. (2004) Discovering disease-associated enzymes by proteome reactivity profiling. Chem. Biol. 11, 1523-1531.   DOI   ScienceOn
69 Evans, M. J., Saghatelian, A., Sorensen, E. J. and Cravatt, B. F. (2005) Target discovery in small-molecule cell-based screens by in situ proteome reactivity profiling. Nat. Biotechnol. 23, 1303-1307.   DOI   ScienceOn
70 Mouradian, S. (2002) Lab-on-a-chip: applications in proteomics. Curr. Opin. Chem. Biol. 6, 51-56.   DOI   ScienceOn
71 Willems, L. I., van der Linden, W. A., Li, N., Li, K. Y., Liu, N., Hoogendoorn, S., van der Marel, G. A., Florea, B. I. and Overkleeft, H. S. (2011) Bioorthogonal Chemistry: Applications in Activity-Based Protein Profiling. Acc. Chem. Res. 44, 718-729.   DOI   ScienceOn
72 Lee, J.-S., Vendrell, M. and Chang, Y. T. (2011) Diversityoriented optical imaging probe development. Curr. Opin. Chem. Biol. 15, 760-767.   DOI   ScienceOn
73 Giepmans, B. N. G., Adams, S. R., Ellisman, M. H. and Tsien, R. Y. (2006) The fluorescent toolbox for assessing protein location and function. Science 312, 217-224.   DOI   ScienceOn