Browse > Article
http://dx.doi.org/10.5423/RPD.2015.21.3.161

Augmenting Plant Immune Responses and Biological Control by Microbial Determinants  

Lee, Sang Moo (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Biosystems and Bioengineering Program, University of Science and Technology)
Chung, Joon-hui (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Biosystems and Bioengineering Program, University of Science and Technology)
Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience and Biotechnology, Biosystems and Bioengineering Program, University of Science and Technology)
Publication Information
Research in Plant Disease / v.21, no.3, 2015 , pp. 161-179 More about this Journal
Abstract
Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.
Keywords
Biological control; Induced resistance; Microbial determinant; PGPR; Plant immunity;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Basse, C. W., Fath, A. and Boller, T. 1993. High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J. Biol. Chem. 268: 14724-14731.
2 Bauer, D. W., Wei, Z. M., Beer, S. V. and Collmer, A. 1995. Erwinia chrysanthemi harpinEch: an elicitor of the hypersensitive response that contributes to soft-rot pathogenesis. Mol. Plant-Microbe Interact. 8: 484-491.   DOI
3 Baureithel, K., Felix, G. and Boller, T. 1994. Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J. Biol. Chem. 269: 17931-17938.
4 Bazzini, A. A., Asurmendi, S., Hopp, H. E. and Beachy, R. N. 2006. Tobacco mosaic virus (TMV) and Potato virus X (PVX) coat proteins confer heterologous interference to PVX and TMV infection, respectively. J. Gen. Virol. 87: 1005-1012.   DOI
5 Benhamou, N., Garand, C. and Goulet, A. 2002. Ability of nonpathogenic Fusarium oxysporum strain Fo47 to induce resistance against Pythium ultimum infection in cucumber. Appl. Environ. Microbiol. 68: 4044-4060.   DOI
6 Bent, E. 2006. Induced systemic resistance mediated by plant growth-promoting rhizobacteria (PGPR) and fungi (PGPF). In: Multigenic and Induced Systemic Resistance in Plants, eds. by S. Tuzun and E. Bent, pp. 9-22. Springer Science and Business Media, Inc.
7 Bentley, R. and Meganathan, R. 1982. Biosynthesis of vitamin K (menaquinone) in bacteria. Microbiol. Rev. 46: 241-280.
8 Boller, T. 1995. Chemoperception of microbial signals in plant cells. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 189-214.   DOI
9 Miya, A., Albert, P., Shinya, T., Desaki, Y., Ichimura, K., Shirasu, K., Narusaka, Y., Kawakami, N., Kaku, H. and Shibuya, N. 2007. CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc. Natl. Acad. Sci. 104: 19613-19618.   DOI
10 Nakazono-Nagaoka, E., Takahashi, T., Shimizu, T., Kosaka, Y., Natsuaki, T., Omura, T. and Sasaya, T. 2009. Cross-protection against Bean yellow mosaic virus (BYMV) and Clover yellow vein virus by Attenuated BYMV isolate M11. Phytopathology 99: 251-257.   DOI
11 Newman, M. A., von Roepenack, E., Daniels, M. and Dow, M. 2000. Lipopolysaccharides and plant responses to phytopathogenic bacteria. Mol. Plant Pathol. 1: 25-31.   DOI
12 Nicaise, V. 2014. Crop immunity against viruses: outcomes and future challenges. Front Plant Sci. 5: 660.
13 Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N. and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39: 500-507.   DOI
14 Nishimura, M. T. and Dangl, J. L. 2010. Arabidopsis and the plant immune system. Plant J. 61: 1053-1066.   DOI
15 Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., Kodama, O., Murofushi, N. and Omori, T. 1996. Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol. 110: 387-392.   DOI
16 Nuhse, T. S., Peck, S. C., Hirt, H. and Boller, T. 2000. Microbial elicitors induce activation and dual phosphorylation of the Arabidopsis thaliana MAPK 6. J. Biol. Chem. 275: 7521-7526.   DOI
17 Brodhun, F., Cristobal-Sarramian, A., Zabel, S., Newie, J., Hamberg, M. and Feussner, I. 2013. An iron 13S-lipoxygenase with an alphalinolenic acid specific hydroperoxidase activity from Fusarium oxysporum. PLoS One 8: e64919.   DOI
18 Boller, T. and Felix, G. 1996. Olfaction in plants: Specific perception of common microbial molecules. In: Biology of Plant-Microbe Interactions, eds. by G. Stacey, B. Mullin, and P. M. Gresshof, pp. 1-9. Inter. Natl Soc. Mol. Plant-Microbe Interac., St. Paul.
19 Borges, A. A., Borges-Perez, A. and Fernandez-Falcon, M. 2004. Induced resistance to Fusarial wilt of banana by menadione sodium bisulphite treatments. Crop Prot. 23: 1245-1247.   DOI
20 Brodersen, P., Malinovsky, F. G., Hematy, K., Newman, M. A. and Mundy, J. 2005. The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol. 138: 1037-1045.   DOI
21 Broekaert, W. F., Delaure, S. L., De Bolle, M. F. and Cammue, B. P. 2006. The role of ethylene in host-pathogen interactions. Annu. Rev. Phytopathol. 44: 393-416.   DOI
22 Brooker, R. J., Widmaier, E. P., Graham, L. E. and Stiling, P. D. 2008. Biology 1st ed. McGraw-Hill.
23 Campos-Soriano, L., Garcia-Martinez, J. and San Segundo, B. 2012. The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. Mol. Plant Pathol. 13: 579-592.   DOI
24 Charkowski, A. O., Alfano, J. R., Preston, G., Yuan, J., He, S. Y. and Collmer, A. 1998. The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J. Bacteriol. 180: 5211-5217.
25 Ongena, M., Jacques, P., Toure, Y., Destain, J., Jabrane, A. and Thonart, P. 2005. Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl. Micro-biol. Biotechnol. 69: 29-38.   DOI
26 Nurnberger, T., Brunner, F., Kemmerling, B. and Piater, L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249-266.   DOI
27 Nunez-Pastrana, R., Arcos-Ortega, G. F., Souza-Perera, R. A., Sanchez-Borges, C. A., Nakazawa-Ueji, Y. E., Garcia-Villalobos, F. J., Guzman-Antonio, A. A. and Zuniga-Aguilar, J. J. 2011. Ethylene, but not salicylic acid or methyl jasmonate, induces a resistance response against Phytophthora capsici in Habanero pepper. Eur. J. Plant Pathol. 131: 669-683.   DOI
28 Okuno, T., Nakayama, M., Okajima, N. and Furusawa, I. 1991. Systemic resistance to downy mildew and appearance of acid solution proteteins in cucumber leaves. Ann. Phytopathol. Soc. Japan 57: 203-211.   DOI
29 Ongena, M., Jourdan, E., Adam, A., Paquot, M., Brans, A., Joris, B., Arpigny, J. L. and Thonart, P. 2007. Surfactin and fengycin lipopeptides of Bacillus subtilis as elicitors of induced systemic resistance in plants. Environ. Microbiol. 9: 1084-1090.   DOI
30 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.   DOI
31 Ortmann, I. and Moerschbacher, B. M. 2006. Spent growth medium of Pantoea agglomerans primes wheat suspension cells for augmented accumulation of hydrogen peroxide and enhanced peroxidase activity upon elicitation. Planta 224: 963-970.   DOI
32 Choi, D., Maeng, J. M., Ding, J. L. and Cha, W. S. 2007. Exopolysaccharide production and mycelial growth in an air-lift bioreactor using Fomitopsis pinicola. J. Microbiol. Biotechnol. 17: 1369-1378.
33 Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J. D., Felix, G. and Boller, T. 2007. A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500.   DOI
34 Chisholm, S. T., Coaker, G., Day, B. and Staskawicz, B. J. 2006. Hostmicrobe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814.   DOI
35 Cho, S. M., Kang, B. R., Han, S. H., Anderson, A. J., Park, J.-Y., Lee, Y.-H., B. H. Cho, Yang, K.-Y., Ryu, C.-M. and Kim, Y. C. 2008. 2R,3R-butanediol, a bacterial volatile produced by Pseudomonas chlororaphis O6, is involved in induction of systemic tolerance to drought in Arabidopsis thaliana. Mol. Plant-Microbe Interact. 21: 1067-1075.   DOI
36 Choi, H. K., Song, G. C., Yi, H. S. and Ryu, C. M. 2014. Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J. Chem. Ecol. 40: 882-892.   DOI
37 Chung, J. H., Song, G. C. and Ryu, C. M. 2015. Sweet scents from good bacteria: Case studies on bacterial volatile compounds for plant growth and immunity. Plant Mol. Biol. DOI 10.1007/s11103-015-0344-8   DOI
38 Cole, S. J., Yoon, A. J., Faull, K. F. and Diener, A. C. 2014. Host perception of jasmonates promotes infection by Fusarium oxysporum formae speciales that produce isoleucine-and leucine-conjugated jasmonates. Mol. Plant Pathol. 15: 589-600.   DOI
39 Park, S. W., Kaimoyo, E., Kumar, D., Mosher, S. and Klessig, D. F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113-116.   DOI
40 Pajerowska-Mukhtar, K. M., Emerine, D. K. and Mukhtar, M. S. 2013. Tell me more: roles of NPRs in plant immunity. Trends Plant Sci. 18: 402-411.   DOI
41 Park, K., Kloepper, J. W. and Ryu, C. M. 2008. Rhizobacterial exopolysaccharides elicit induced resistance on cucumber. J. Microbiol. Biotechnol. 18: 1095-1100.
42 Paszkowski, U. 2006. Mutualism and parasitism: the yin and yang of plant symbioses. Curr. Opin. Plant Biol. 9: 364-370.   DOI
43 Pierson, L. S., 3rd, Wood, D. W. and Pierson, E. A. 1998. Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu. Rev. Phytopathol. 36: 207-225.   DOI
44 Pieterse, C. M. J., Van Pelt, J. A., Van Wees, S. C. M., Ton, J., Leon-Kloosterziel, K. M., Keurentjes, J. J. B., Verhagen, B. W. M., Knoester, M., Ientse Van der Sluis, Bakker, P. A. H. M. and Van Loon, L. C. 2001. Rhizobacteria-mediated induced systemic resistance: triggering, signaling and expression. Eur. J. Plant Pathol. 107: 51-61.   DOI
45 Pieterse, C. M. J., Van Wees, S. C. M., Ton, J., Leon-Kloosterziel, K. M., Van Pelt, J. A., Keurentjes, J. J. B., Knoester, M. and Van Loon, L. C. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis: involvement of jasmonate and ethylene. In: Biology of Plant-Microbe Interactions, eds. by P. J. G. M. De Wit, T. Bisseling and W. J. Stiekema, pp. 291-296. International Society for Molecular Plant-Microbe Interactions., St. Paul.
46 Cortes-Barco, A. M., Goodwin, P. H. and Hsiang, T. 2010a Comparison of induced resistance activated by benzothiadiazole, (2R,3R)-butanediol and an isoparaffin mixture against anthracnose of Nicotiana benthamiana. Plant Pathol. 59: 643-653.   DOI
47 Conrath, U., Beckers, G. J., Flors, V., Garcia-Agustin, P., Jakab, G., Mauch, F., Newman, M. A., Pieterse, C. M., Poinssot, B., Pozo, M. J., Pugin, A., Schaffrath, U., Ton, J., Wendehenne, D., Zimmerli, L. and Mauch-Mani, B. 2006. Priming: getting ready for battle. Mol. Plant-Microbe Interact. 19: 1062-1071.   DOI
48 Conti, G. G., Pianezzola, A., Arnoldi, A., Violini, G. and Maffi, D. 1990. Preinoculation with tobacco necrosis virus enhances perosidase active and lignification. J. Phytopathol. 128: 191-202.   DOI
49 Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S. and Gianinazzipearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Mol. Plant-Microbe Interact. 11: 1017-1028.   DOI
50 Cortes-Barco, A. M., Hsiang, T. and Goodwin, P. H. 2010b. Induced systemic resistance against three foliar diseases of Agrostis stolonifera by (2R,3R)-butanediol or an isoparaffin mixture. Ann. Appl. Biol. 157: 179-189.   DOI
51 Coutte, R. H. A. and Wagih, E. E. 1983. Induced resistance to virus infection. Phtopathologische Zeitschrift 107: 57-69.
52 Coventry, H. S. and Dubery, I. A. 2001 Lipopolysaccharides from Burkholderia cepacia contribute to an enhanced defensive capacity and the induction of pathogenesis-related proteins in Nicotianae tabacum. Physiol. Mol. Plant Pathol. 58: 149-158.   DOI
53 Pozo, M. J., Verhage, A., Garcia-andrade, J., Garcia, J. M. and Azconaguilar, C. 2009. Priming plant defence against pathogens by arbuscular mycorrhizal fungi. In: Mycorrhizas-Functional Processes and Ecological Impact, eds. by C. Azcon-Aguilar, J. M. Barea, S. Gianinazzi and V. Gianinazzi-Pearson, pp. 123-135. Springer.
54 Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. and Bakker, P. A. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52: 347-375.   DOI
55 Pozo, M. J., Cordier, C., Dumas-Gaudot, E., Gianinazzi, S., Barea, J. M. and Azcon-Aguilar, C. 2002. Localized versus systemic effect of arbuscular mycorrhizal fungi on defence responses to Phytophthora infection in tomato plants. J. Exp. Bot. 53: 525-534.   DOI
56 Pozo, M. J. and Azcon-Aguilar, C. 2007. Unraveling mycorrhizainduced resistance. Curr. Opin. Plant Biol. 10: 393-398.   DOI
57 Press, C. M., Wilson, M., Tuzun, S. and Kloepper, J. W. 1997. Salicylic acid produced by Serratia marcescens 90-166 is not the primary determinant of induced systemic resistance in cucumber or tobacco. Mol. Plant-Microbe Interact. 10: 761-768.   DOI
58 Press, C. M., Loper, J. E. and Kloepper, J. W. 2001. Role of iron in rhizobacteria-mediated induced systemic resistance of cucumber. Phytopathology 91: 593-598.   DOI
59 Preston, G., Huang, H. C., He, S. Y. and Collmer, A. 1995. The HrpZ proteins of Pseudomonas syringae pvs. syringae, glycinea and tomato are encoded by an operon containing Yersinia ysc homologs and elicit the hypersensitive response in tomato but not soybean. Mol. Plant-Microbe Interact. 8: 717-732.   DOI
60 Cui, Y., Madi, L., Mukherjee, A., Dumenyo, C. K. and Chatterjee, A. K. 1996. The RsmA-mutants of Erwinia carotovora subsp. carotovora strain Ecc71 overexpress hrpNEcc and elicit a hypersensitive reaction-like response in tobacco leaves. Mol. Plant-Microbe Interact. 9: 565-573.   DOI
61 Culver, J. N. 1996. Tobamovirus cross protection using a potexvirus vector. Virology 226: 228-235.   DOI
62 Demain, A. L. 1972. Riboflavin oversynthesis. Annu. Rev. Microbiol. 26: 369-388.   DOI
63 De Meyer, G. and Hofte, M. 1997. Salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 induces resistance to leaf infection by Botrytis cinerea on bean. Phytopathology 87: 588-593.   DOI
64 De Meyer, G., Capieau, K., Audenaert, K., Buchala, A., Metraux, J. P. and Hofte, M. 1999. Nanogram amounts of salicylic acid produced by the rhizobacterium Pseudomonas aeruginosa 7NSK2 activate the systemic acquired resistance pathway in bean. Mol. Plant-Microbe Interact. 12: 450-458.   DOI
65 De Meyer, G., Bigirimana, J., Elad, Y. and Hofte, M. 1998. Induced systemic resistance in Trichoderma harzianum T39 biocontrol of Botrytis cinerea. Eur. J. Plant Pathol. 104: 279-286.   DOI
66 Dempsey, D. A. and Klessig, D. F. 2012. SOS-too many signals for systemic acquired resistance? Trends Plant Sci. 17: 538-545.   DOI
67 De Roman, M., Fernandez, I., Wyatt, T., Sahrawy, M., Heil, M. and Pozo, M. J. 2011. Elicitation of foliar resistance mechanisms transiently impairs root association with arbuscular mycorrhizal fungi. J. Ecol. 99: 36-45.   DOI
68 Raffaele, S., Rivas, S. and Roby, D. 2006. An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett. 580: 3498-3504.   DOI
69 Qutob, D., Kamoun, S. and Gijzen, M. 2002. Expression of a Phytophthora sojae necrosis-inducing protein occurs during transition from biotrophy to necrotrophy. Plant J. 32: 361-373.   DOI
70 Raaijmakers, J. M., De Bruijn, I., Nybroe, O. and Ongena, M. 2010. Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfActa.nts and antibiotics. FEMS Microbiol. Rev. 34: 1037-1062.   DOI
71 Rahman, A., Kuldau, G. A. and Uddin, W. 2014. Induction of salicylic acid-mediated defense response in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 104: 614-623.   DOI
72 Rahman, A., Uddin, W. and Wenner, N. G. 2015. Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol. Plant Pathol. 16: 546-558.   DOI
73 Ross, A. F. 1961a. Localized acquired resistance to plant virus infection in hypersensitive hosts. Virology 14: 329-339.   DOI
74 Ross, A. F. 1961b. Systemic acquired resistance induced by localized virus infections in plants. Virology 14: 340-358.   DOI
75 Rudrappa, T., Biedrzycki, M. L., Kunjeti, S. G., Donofrio, N. M., Czymmek, K. J., Pare, P. W. and Bais, H. P. 2010. The rhizobacterial elicitor acetoin induces systemic resistance in Arabidopsis thaliana. Commun. Integr. Biol. 3: 130-138.   DOI
76 Doares, S. H., Narvaez-Vasquez, J., Conconi, A. and Ryan, C. A. 1995. Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid. Plant Physiol. 108: 1741-1746.   DOI
77 Desaki, Y., Miya, A., Venkatesh, B., Tsuyumu, S., Yamane, H., Kaku, H., Minami, E. and Shibuya, N. 2006. Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells. Plant Cell Physiol. 47: 1530-1540.   DOI
78 De Vleesschauwer, D., Djavaheri, M., Bakker, P. A. and Hofte, M. 2008. Pseudomonas fluorescens WCS374r-induced systemic resistance in rice against Magnaporthe oryzae is based on pseudobactinmediated priming for a salicylic acid-repressible multifaceted defense response. Plant Physiol. 148: 1996-2012.   DOI
79 De Vleesschauwer, D., Chernin, L. and Hofte, M. M. 2009. Differential effectiveness of Serratia plymuthica IC1270-induced systemic resistance against hemibiotrophic and necrotrophic leaf pathogens in rice. BMC Plant Biol. 9: 9.   DOI
80 Dodds, P. N. and Rathjen, J. P. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 11: 539-548.
81 Dong, H., Delaney, T. P., Bauer, D. W. and Beer, S. V. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. Plant J. 20: 207-215.   DOI
82 Dong, H. and Beer, S. V. 2000. Riboflavin induces disease resistance in plants by activating a novel signal transduction pathway. Phytopathology 90: 801-811.   DOI
83 Dow, M., Newman, M. A. and von Roepenack, E. 2000. The induction and modulation of plant defense responses by bacterial lipopolysaccharides. Annu. Rev. Phytopathol. 38: 241-261.   DOI
84 Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A. and Langebartels, C. 2006. Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ. 29: 909-918.   DOI
85 Ryu, C. M., Farag, M. A., Hu, C. H., Reddy, M. S., Kloepper, J. W. and Pare, P. W. 2004. Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol. 134: 1017-1026.   DOI
86 Ryu, C. M. Cho, H. K., Lee, C. H., Murphy, J. F., Lee, J. K. and Kloepper, J. W. 2013. Modulation of quorum sensing in acyl-homoserine lactone-producing or-degrading tobacco plants leads to alteration of induced systemic resistance elicited by the rhizobacterium Serratia marcescens 90-166. Plant Pathol. J. 29: 182-192.   DOI
87 Schikora, A., Schenk, S. T., Stein, E., Molitor, A., Zuccaro, A. and Kogel, K. H. 2011. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157: 1407-1418.   DOI
88 Schulze, B., Mentzel, T., Jehle, A. K., Mueller, K., Beeler, S., Boller, T., Felix, G. and Chinchilla, D. 2010. Rapid heteromerization and phosphorylation of ligand-activated plant transmembrane receptors and their associated kinase BAK1. J. Biol. Chem. 285: 9444-9451.   DOI
89 Segarra, G., Casanova, E., Bellido, D., Odena, M. A., Oliveira, E. and Trillas, I. 2007. Proteome, salicylic acid and jasmonic acid changes in cucumber plants inoculated with Trichoderma asperellum strain T34. Proteomics 7: 3943-3952.   DOI
90 Sequeira, L. 1983. Mechanisms of induced resistance in plants. Annu. Rev. Microbiol. 37: 51-79.   DOI
91 Erbs, G. and Newman, M. A. 2003. The role of lipopolysaccharides in induction of plant defence responses. Mol. Plant Pathol. 4: 421-425.   DOI
92 D'Alessandro, A., Amelio, I., Berkers, C. R., Antonov, A., Vousden, K. H., Melino, G. and Zolla, L. 2014. Metabolic effect of TAp63alpha: enhanced glycolysis and pentose phosphate pathway, resulting in increased antioxidant defense. Oncotarget 5: 7722-7733.   DOI
93 Engelberth, J., Koch, T., Schuler, G., Bachmann, N., Rechtenbach, J. and Boland, W. 2001. Ion channel-forming alamethicin is a potent elicitor of volatile biosynthesis and tendril coiling. Cross talk between jasmonate and salicylate signaling in lima bean. Plant Physiol. 125: 369-377.   DOI
94 Engelhardt, S., Lee, J., Gabler, Y., Kemmerling, B., Haapalainen, M. L., Li, C. M., Wei, Z., Keller, H., Joosten, M., Taira, S. and Nurnberger, T. 2009. Separable roles of the Pseudomonas syringae pv. phaseolicola accessory protein HrpZ1 in ion-conducting pore formation and activation of plant immunity. Plant J. 57: 706-717.   DOI
95 Farag, M. A., Ryu, C. M., Sumner, L. W. and Pare, P. W. 2006. GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67: 2262-2268.   DOI
96 Farag, M. A., Zhang, H. and Ryu, C. M. 2013. Dynamic chemical communication between plants and bacteria through airborne aignals: induced resistance by bacterial volatiles. J. Chem. Ecol. 39: 1007-1018.   DOI
97 Felix, G., Duran, J. D., Volko, S. and Boller, T. 1999. Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J. 18: 265-276.   DOI
98 Sheard, L. B., Tan, X., Mao, H., Withers, J., Ben-Nissan, G., Hinds, T. R., Kobayashi, Y., Hsu, F. F., Sharon, M., Browse, J., He, S. Y., Rizo, J., Howe, G. A. and Zheng, N. 2010. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor. Nature 468: 400-405.   DOI
99 Serfling, A., Wirsel, S. G., Lind, V. and Deising, H. B. 2007. Performance of the biocontrol fungus Piriformospora indica on wheat under greenhouse and field conditions. Phytopathology 97: 523-531.   DOI
100 Sharp, J. K., Valent, B. and Albersheim, P. 1984. Purification and partial characterization of a beta-glucan fragment that elicits phytoalexin accumulation in soybean. J. Biol. Chem. 259: 11312-11320.
101 Shibuya, N. and Minami, E. 2001. Oligosaccharide signalling for defence responses in plant. Physiol. Mol. Plant Pathol. 59: 223-233.   DOI
102 Silipo, A., Molinaro, A., Sturiale, L., Dow, J. M., Erbs, G., Lanzetta, R., Newman, M. A. and Parrilli, M. 2005. The elicitation of plant innate immunity by lipooligosaccharide of Xanthomonas campestris. J. Biol. Chem. 280: 33660-33668.   DOI
103 Somerville, C. and Koornneef, M. 2002. A fortunate choice: the history of Arabidopsis as a model plant. Nat. Rev. Genet. 3: 883-889.
104 Song, G. C., Choi, H. K. and Ryu, C. M. 2013. The folate precursor para-aminobenzoic acid elicits induced resistance against Cucumber mosaic virus and Xanthomonas axonopodis. Ann. Bot. 111: 925-934.   DOI
105 Song, G. C. and Ryu, C. M. 2013. Two volatile organic compounds trigger plant self-defense against a bacterial pathogen and a sucking insect in cucumber under open field conditions. Int. J. Mol. Sci. 14: 9803-9819.   DOI
106 Fujikawa, T., Sakaguchi, A., Nishizawa, Y., Kouzai, Y., Minami, E., Yano, S., Koga, H., Meshi, T. and Nishimura, M. 2012. Surface alpha-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog. 8: e1002882.   DOI
107 Fellbrich, G., Romanski, A., Varet, A., Blume, B., Brunner, F., Engelhardt, S., Felix, G., Kemmerling, B., Krzymowska, M. and Nurnberger, T. 2002. NPP1, a Phytophthora-associated trigger of plant defense in parsley and Arabidopsis. Plant J. 32: 375-390.   DOI
108 Fletcher, J. T. 1978. The use of avirulent virus strain to protect plants against the effects of virulent strains. Ann. Appl. Biol. 110-114.
109 Fliegmann, J., Mithofer, A., Wanner, G. and Ebel, J. 2004. An ancient enzyme domain hidden in the putative beta-glucan elicitor receptor of soybean may play an active part in the perception of pathogen-associated molecular patterns during broad host resistance. J. Biol. Chem. 279: 1132-1140.   DOI
110 Fukuda, H., Ogawa, T. and Tanase, S. 1993. Ethylene production by micro-organisms. Adv. Microb. Physiol. 35: 275-306.   DOI
111 Gerber, I. B. and Dubery, I. A. 2004. Protein phosphorylation in Nicotiana tabacum cells in response to perception of lipopolysaccharides from Burkholderia cepacia. Phytochemistry 65: 2957-2966.   DOI
112 Gomez-Gomez, L. and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003-1011.   DOI
113 Granado, J., Felix, G. and Boller, T. 1995. Perception of fungal sterols in plants (subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells). Plant Physiol. 107: 485-490.   DOI
114 Taheri, P. and Hofte, M. 2007. Induction of systemic defense responses in rice against the sheath blight pathogen Rhizoctonia solani, by means of riboflavin. Commun. Agric. Appl. Biol. Sci. 72: 983-987.
115 Spoel, S. H., Johnson, J. S. and Dong, X. 2007. Regulation of tradeoffs between plant defenses against pathogens with different lifestyles. Proc. Natl. Acad. Sci. USA 104: 18842-18847.   DOI
116 Stein, E., Molitor, A., Kogel, K. H. and Waller, F. 2008. Systemic resistance in Arabidopsis conferred by the mycorrhizal fungus Piriformospora indica requires jasmonic acid signaling and the cytoplasmic function of NPR1. Plant Cell Physiol. 49: 1747-1751.   DOI
117 Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y. and Mayama, S. 2001. Induction and signaling of an apoptotic response typified by DNA laddering in the defense response of oats to infection and elicitors. Mol. Plant-Microbe Interact. 14: 477-486.   DOI
118 Taheri, P. and Tarighi, S. 2010. Riboflavin induces resistance in rice against Rhizoctonia solani via jasmonate-mediated priming of phenylpropanoid pathway. J. Plant Physiol. 167: 201-208.   DOI
119 Taheri, P. and Tarighi, S. 2011. A survey on basal resistance and riboflavin-induced defense responses of sugar beet against Rhizoctonia solani. J. Plant Physiol. 168: 1114-1122.   DOI
120 Takai, R., Hasegawa, K., Kaku, H., Shibuya, N. and Minami, E. 2001. Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Sci. 160: 577-583.   DOI
121 Hammerschmidt, R. and Nicholson, R. L. 1999. A survey of plant defense responses to pathogens. In: Induced Plant Defenses Against Pathogens and Herbivores, eds. by A. Agrawal and S. Tuzun, APS Press, St Paul, MN.
122 Guimil, S., Chang, H. S., Zhu, T., Sesma, A., Osbourn, A., Roux, C., Ioannidis, V., Oakeley, E. J., Docquier, M., Descombes, P., Briggs, S. P. and Paszkowski, U. 2005. Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. Proc. Natl. Acad. Sci. USA. 102: 8066-8070.   DOI
123 Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319.   DOI
124 Hammerschmidt, R. and Yang-Cashman, P. 1995. Induced resistance in cucurbits. In: Induced Resistance to Disease in Plants, eds. by R. Hammerschmidt and J. Kuc, pp. 63-85. Kluwer Academic Publishers, Dordrecht.
125 Han, S. H., Lee, S. J., Moon, J. H., Park, K. H., Yang, K. Y., Cho, B. H., Kim, K. Y., Kim, Y. W., Lee, M. C., Anderson, A. J. and Kim, Y. C. 2006. GacSdependent production of 2R, 3R-butanediol by Pseudomonas chlororaphis O6 is a major determinant for eliciting systemic resistance against Erwinia carotovora but not against Pseudomonas syringae pv. tabaci in tobacco. Mol. Plant-Microbe Interact. 19: 924-930.   DOI
126 Harman, G. E., Petzoldt, R., Comis, A. and Chen, J. 2004a. Interactions between Trichoderma harzianum strain T22 and maize inbred line Mo17 and effects of these interactions on diseases caused by Pythium ultimum and Colletotrichum graminicola. Phytopathology 94: 147-153.   DOI
127 Harman, G. E., Howell, C. R., Viterbo, A., Chet, I. and Lorito, M. 2004b. Trichoderma species-opportunistic, avirulent plant symbionts. Nat. Rev. Microbiol. 2: 43-56.   DOI
128 Thomma, B. P., Eggermont, K., Tierens, K. F. and Broekaert, W. F. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121: 1093-1102.   DOI
129 Taki, A., Yamagishi, N. and Yoshikawa, N. 2013. Development of apple latent spherical virus-based vaccines against three tospoviruses. Virus Res. 176: 251-258.   DOI
130 Tamura, A., Kato, T., Taki, A., Sone, M., Satoh, N., Yamagishi, N., Takahashi, T., Ryo, B. S., Natsuaki, T. and Yoshikawa, N. 2013. Preventive and curative effects of Apple latent spherical virus vectors harboring part of the target virus genome against potyvirus and cucumovirus infections. Virology 446: 314-324.   DOI
131 Tran, H., Ficke, A., Asiimwe, T., Hofte, M. and Raaijmakers, J. M. 2007. Role of the cyclic lipopeptide massetolide A in biological control of Phytophthora infestans and in colonization of tomato plants by Pseudomonas fluorescens. New Phytol. 175: 731-742.   DOI
132 Umemoto, N., Kakitani, M., Iwamatsu, A., Yoshikawa, M., Yamaoka, N. and Ishida, I. 1997. The structure and function of a soybean beta-glucan-elicitor-binding protein. Proc. Natl. Acad. Sci. USA 94: 1029-1034.   DOI
133 Uppalapati, S. R., Ayoubi, P., Weng, H., Palmer, D. A., Mitchell, R. E., Jones, W. and Bender, C. L. 2005. The phytotoxin coronatine and methyl jasmonate impact multiple phytohormone pathways in tomato. Plant J. 42: 201-217.   DOI
134 Valkonen, J. P., Rajamaki, M. L. and Kekarainen, T. 2002. Mapping of viral genomic regions important in cross-protection between strains of a potyvirus. Mol. Plant-Microbe Interact. 15: 683-692.   DOI
135 Hause, B., Mrosk, C., Isayenkov, S. and Strack, D. 2007. Jasmonates in arbuscular mycorrhizal interactions. Phytochemistry 68: 101-110.   DOI
136 Harrison, M. J. 1999. Molecular and cellular aspects of the arbuscular mycorrhizal symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50: 361-389.   DOI
137 Hause, B., Maier, W., Miersch, O., Kramell, R. and Strack, D. 2002. Induction of jasmonate biosynthesis in arbuscular mycorrhizal barley roots. Plant Physiol. 130: 1213-1220.   DOI
138 Hause, B. and Fester, T. 2005. Molecular and cell biology of arbuscular mycorrhizal symbiosis. Planta 221: 184-196.   DOI
139 He, S. Y., Huang, H. C. and Collmer, A. 1993. Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266.   DOI
140 Heil, M. 1999. Systemic acquired resistance: available information and open ecological questions. J. Ecol. 87: 341-346.   DOI
141 Heil, M., Hilpert, A., Kaiser, W. and Linsenmair, K. E. 2000. Reduced growth and seed set following chemical induction of pathogen defence: does systemic acquired resistance (SAR) incur allocation costs? J. Ecol. 88: 645-654.   DOI
142 Heil, M., Fiala, B., Maschwitz, U. and Linsenmair, K. E. 2001. On benefits of indirect defence: short-and long-term studies of antiherbivore protection via mutualistic ants. Oecologia 126: 395-403.   DOI
143 Heil, M. and Baldwin, I. T. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends Plant Sci. 7: 61-67.
144 van Peer, R. and Schippers, B. 1992. LPS of plant growth-promoting Pseudomonas sp. strain WCS417r induce resistance in carnation to Fusarium wilt. Netherland J. Plant Pathol. 98: 129-139.   DOI
145 Vander, P., Varum, K. M., Domard, A., Gueddari, N. E. E. and Moerschbacher, B. M. 1998. Comparison of the ability of partially N-acetylated chitosans and chitooligosaccharides to elicit resistance reactions in wheat leaves. Plant Physiol. 118: 1353-1359.   DOI
146 van Loon, L. C., Bakker, P. A. and Pieterse, C. M. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36: 453-483.   DOI
147 van Loon, L. C. 2007. Plant responses to plant growth-promoting rhizobacteria. Eur. J. Plant Pathol. 119: 243-254.   DOI
148 Veit, S., Worle, J. M., Nurnberger, T., Koch, W. and Seitz, H. U. 2001. A novel protein elicitor (PaNie) from Pythium aphanidermatum induces multiple defense responses in carrot, Arabidopsis and tobacco. Plant Physiol. 127: 832-841.   DOI
149 Vijayan, P., Shockey, J., Levesque, C. A., Cook, R. J. and Browse, J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95: 7209-7214.   DOI
150 Viterbo, A., Wiest, A., Brotman, Y., Chet, I. and Kenerley, C. 2007. The 18mer peptaibols from Trichoderma virens elicit plant defence responses. Mol. Plant Pathol. 8: 737-746.   DOI
151 Vlot, A. C., Klessig, D. F. and Park, S. W. 2008. Systemic acquired resistance: the elusive signal(s). Curr. Opin. Plant Biol. 11: 436-442.   DOI
152 Huang, H. C., Lin, R. H., Chang, C. J., Collmer, A. and Deng, W. L. 1995. The complete hrp gene cluster of Pseudomonas syringae pv. syringae 61 includes two blocks of genes required for harpinPss secretion that are arranged colinearly with Yersinia ysc homologs. Mol. Plant-Microbe Interact. 8: 733-746.   DOI
153 Herrera-medina, M. J., Gagnon, H., Piche, Y., Ocampo, J. A., Garciagarrido, J. M. and Vierheilig, H. 2003. Root colonization by arbuscular mycorrhizal fungi is affected by the salicylic acid content of the plant. Plant Sci. 164: 993-998.   DOI
154 Hossain, M. M., Sultana, F., Kubota, M. and Hyakumachi, M. 2008. Differential inducible defense mechanisms against bacterial speck pathogen in Arabidopsis thaliana by plant-growth-promoting-fungus Penicillium sp. GP16-2 and its cell free filtrate. Plant Soil 304: 227-239.   DOI
155 Howe, G. A. and Jander, G. 2008. Plant immunity to insect herbivores. Annu. Rev. Plant Biol. 59: 41-66.   DOI
156 Hugues, J. A. and Ollennu, L. A. A. 1994. Mild strain protection of cocoa in Ghana against cocoa swollen shoot virus-a review. Plant Pathol. 43: 442-457.   DOI
157 Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858.   DOI
158 Ishiga, Y., Uppalapati, S. R., Ishiga, T., Elavarthi, S., Martin, B. and Bender, C. L. 2009. The phytotoxin coronatine induces lightdependent reactive oxygen species in tomato seedlings. New Phytol. 181: 147-160.   DOI
159 Waller, F., Mukherjee, K., Deshmukh, S. D., Achatz, B., Sharma, M., Schafer, P. and Kogel, K. H. 2008. Systemic and local modulation of plant responses by Piriformospora indica and related Sebacinales species. J. Plant Physiol. 165: 60-70.   DOI
160 Wafaa, M. H., W., Hussein, M. M., Mehanna, H. M. and El-Moneim, D. 2014. Bacteria polysaccharides elicit resistance of wheat against some biotic and abiotic stress. Int. J. Pharm. Sci. Rev. Res. 29: 292-298.
161 Wan, J., Zhang, X. C., Neece, D., Ramonell, K. M., Clough, S., Kim, S. Y., Stacey, M. G. and Stacey, G. 2008. A LysM receptor-like kinase plays a critical role in chitin signaling and fungal resistance in Arabidopsis. Plant Cell 20: 471-81.   DOI
162 Wasternack, C. 2007. Jasmonates: an update on biosynthesis, signal transduction and action in plant stress response, growth and development. Ann. Bot. 100: 681-697.   DOI
163 Wei, G., Kloepper, J. W. and Tuzun, S. 1991. Induction of systemic resistance of cucumber to Colletotrichum orbiculare by select strains of plant growth-promoting rhizobacteria. Phytopathology 81: 1508-1512.   DOI
164 Wei, Z. M., Laby, R. J., Zumoff, C. H., Bauer, D. W., He, S. Y., Collmer, A. and Beer, S. V. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88.   DOI
165 Weller, D. M., Raaijmakers, J. M., Gardener, B. B. and Thomashow, L. S. 2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu. Rev. Phytopathol. 40: 309-348.   DOI
166 Kamoun, S. 2001. Nonhost resistance to Phytophthora: novel prospects for a classical problem. Curr. Opin. Plant Biol. 4: 295-300.   DOI
167 Jin, Q., Hu, W., Brown, I., McGhee, G., Hart, P., Jones, A. L. and He, S. Y. 2001. Visualization of secreted Hrp and Avr proteins along the Hrp pilus during type III secretion in Erwinia amylovora and Pseudomonas syringae. Mol. Microbiol. 40: 1129-1139.   DOI
168 Jones, J. D. and Dangl, J. L. 2006. The plant immune system. Nature 444: 323-329.   DOI
169 Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E. and Shibuya, N. 2006. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc. Natl. Acad. Sci. USA. 103: 11086-11091.   DOI
170 Kanchiswamy, C. N., Malnoy, M. and Maffei, M. E. 2015. Bioprospecting bacterial and fungal volatiles for sustainable agriculture. Trends Plant Sci. 20: 206-211.   DOI
171 Kim, J. F. and Beer, S. V. 1998. HrpW of Erwinia amylovora, a new harpin that contains a domain homologous to pectate lyases of a distinct class. J. Bacteriol. 180: 5203-5210.
172 Klarzynski, O., Plesse, B., Joubert, J. M., Yvin, J. C., Kopp, M., Kloareg, B. and Fritig, B. 2000. Linear beta-1,3 glucans are elicitors of defense responses in tobacco. Plant Physiol. 124: 1027-1038.   DOI
173 Klarzynski, O., Descamps, V., Plesse, B., Yvin, J. C., Kloareg, B. and Fritig, B. 2003. Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Mol. Plant-Microbe Interact. 16: 115-122.   DOI
174 Yamaguchi, T., Yamada, A., Hong, N., Ogawa, T., Ishii, T. and Shibuya, N. 2000. Differences in the recognition of glucan elicitor signals between rice and soybean: beta-glucan fragments from the rice blast disease fungus Pyricularia oryzae that elicit phytoalexin biosynthesis in suspension-cultured rice cells. Plant Cell 12: 817-826.
175 Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C. and Bakker, P. A. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412.   DOI
176 Wen, F., Lister, R. M. and Fattouh, F. A. 1991. Cross-protection among strains of barley yellow dwarf virus. J. Gen. Virol. 72: 791-799.   DOI
177 Yamada, A., Shibuya, N., Kodama, O. and Akatsuka, T. 1993. Induction of phytoalexin formation in suspension-cultured rice cells by N-acetylchitooligosaccharides. Biosci. Biotech. Biochem. 57: 405-409.   DOI
178 Yang, J. W., Yu, S. H. and Ryu, C. M. 2009. Priming of defense-related genes confers root-colonizing bacilli-elicited induced systemic resistance in pepper. Plant Pathol. J. 25: 389-399.   DOI
179 Yang, S. Y., Park, M. R., Kim, I. S., Kim, Y. C., Yang, J. W. and Ryu, C.-M. 2010. 2-Aminobenzoic acid of Bacillus sp. BS107 as an ISR determinant against Pectobacterium carotovorum subsp. carotovorum SCC1 in tobacco. Eur. J. Plant Pathol. 129: 371-378.
180 Yang, Z., Endo, S., Tanida, A., Kai, K. and Watanabe, N. 2009. Synergy effect of sodium acetate and glycosidically bound volatiles on the release of volatile compounds from the unscented cut flower (Delphinium elatum L. "Blue Bird"). J. Agric. Food Chem. 57: 6396-6401.   DOI
181 Koike, N., Hyakumachi, M., Kageyama, K., Tsuyumu, S. and Doke, N. 2001. Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignification and superoxide generation. Eur. J. Plant Pathol. 107: 523-533.   DOI
182 Kloek, A. P., Verbsky, M. L., Sharma, S. B., Schoelz, J. E., Vogel, J., Klessig, D. F. and Kunkel, B. N. 2001. Resistance to Pseudomonas syringae conferred by an Arabidopsis thaliana coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. Plant J. 26: 509-522.   DOI
183 Kloepper, R. F., Norling, L. L., McDaniel, M. L. and Landt, M. 1991. Biochemical basis for the specificity of alloxan inactivation of calmodulin-dependent protein kinase II. Cell Calcium 12: 351-359.   DOI
184 Kloepper, J. W., Ryu, C. M. and Zhang, S. 2004. Induced Systemic Resistance and Promotion of Plant Growth by Bacillus spp. Phytopathology 94: 1259-1266.   DOI
185 Koornneef, M. and Meinke, D. 2010. The development of Arabidopsis as a model plant. Plant J. 61: 909-921.   DOI
186 Kosaka, Y., Ryang, B.-S., Kobori, T., Shiomi, H., Yasuhara H. and Kataoka, M. 2006. Effectiveness of an attenuated Zucchini yellow mosaic virus isolate for cross-protecting cucumber. Plant Dis. 90: 67-72.   DOI
187 Kuc, J. 1982. Induced immunity to plant disease. Bioscience 32: 854-860.   DOI
188 Kurth, E. G., Peremyslov, V. V., Prokhnevsky, A. I., Kasschau, K. D., Miller, M., Carrington, J. C. and Dolja, V. V. 2012. Virus-derived gene expression and RNA interference vector for grapevine. J. Virol. 86: 6002-6009.   DOI
189 Yoon, J. Y., Ahn, H. I., Kim, M., Tsuda, S. and Ryu, K. H. 2006. Pepper mild mottle virus pathogenicity determinants and cross protection effect of attenuated mutants in pepper. Virus Res. 118: 23-30.   DOI
190 Yedidia, I., Shoresh, M., Kerem, Z., Benhamou, N., Kapulnik, Y. and Chet, I. 2003. Concomitant induction of systemic resistance to Pseudomonas syringae pv. lachrymans in cucumber by Trichoderma asperellum (T-203) and accumulation of phytoalexins. Appl. Environ. Microbiol. 69: 7343-7353.   DOI
191 You, B. J., Chiang, C. H., Chen, L. F., Su, W. C. and Yeh, S. D. 2005. Engineered mild strains of Papaya ringspot virus for broader cross protection in Cucurbits. Phytopathology 95: 533-540.   DOI
192 Zeidler, D., Zahringer, U., Gerber, I., Dubery, I., Hartung, T., Bors, W., Hutzler, P. and Durner, J. 2004. Innate immunity in Arabidopsis thaliana: lipopolysaccharides activate nitric oxide synthase (NOS) and induce defense genes. Proc. Natl. Acad. Sci. U. S. A. 101: 15811-15816.   DOI
193 Zhang, B., Ramonell, K., Somerville, S. and Stacey, G. 2002. Characterization of early, chitin-induced gene expression in Arabidopsis. Mol. Plant-Microbe Interact. 15: 963-970.   DOI
194 Zhang, Z. M., Wu, W. W. and Li, G. K. 2008. A GC-MS study of the volatile organic composition of straw and oyster mushrooms during maturity and its relation to antioxidant activity. J. Chromatogr. Sci. 46: 690-696.   DOI
195 Zhang, Z. M., Wu, W. W. and Li, G. K. 2009. Study of the alarming volatile characteristics of Tessaratoma papillosa using SPME-GCMS. J. Chromatogr. Sci. 47: 291-296.   DOI
196 Lee, J., Lee, K. and Shin, S. 2000. Theoretical studies of the response of a protein structure to cavity-creating mutations. Biophys. J. 78: 1665-1671.   DOI
197 Kwon, Y. S., Ryu, C. M., Lee, S., Park, H. B., Han, K. S., Lee, J. H., Lee, K., Chung, W. S., Jeong, M. J., Kim, H. K. and Bae, D. W. 2010. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232: 1355-1370.   DOI
198 Laurie-Berry, N., Joardar, V., Street, I. H. and Kunkel, B. N. 2006. The Arabidopsis thaliana JASMONATE INSENSITIVE 1 gene is required for suppression of salicylic acid-dependent defenses during infection by Pseudomonas syringae. Mol. Plant-Microbe Interact. 19: 789-800.   DOI
199 Le Blanc, J. G., Laino, J. E., del Valle, M. J., Vannini, V., van Sinderen, D., Taranto, M. P., de Valdez, G. F., de Giori, G. S. and Sesma, F. 2011. B-group vitamin production by lactic acid bacteria--current knowledge and potential applications. J. Appl. Microbiol. 111: 1297-1309.   DOI
200 Lee, R. F. and Keremane, M. L. 2013. Mild strain cross protection of tristeza: a review of research to protect against decline on sour orange in Florida. Front. Microbiol. 4: 259.
201 Leeman, M., Den Ouden, F. M., Van Pelt, J. A., Dirkx, F. P. M., Steijl, H., Bakker, P. A. H. M. and Schippers, B. 1996. Iron availability affects induction of systemic resistance against Fusarium wilt of radish by Pseudomonas fluorescens. Phytopathology 86: 149-155.   DOI
202 Leigh, J. A. and Coplin, D. L. 1992. Exopolysaccharides in plantbacterial interactions. Annu. Rev. Microbiol. 46: 307-346.   DOI
203 Zipfel, C. 2008. Pattern-recognition receptors in plant innate immunity. Curr. Opin. Immunol. 20: 10-16.   DOI
204 Zhang, Z. Z., Li, Y. B., Qi, L. and Wan, X. C. 2006. Antifungal activities of major tea leaf volatile constituents toward Colletorichum camelliae Massea. J. Agric. Food Chem. 54: 3936-3940.   DOI
205 Zipfel, C. and Felix, G. 2005. Plants and animals: a different taste for microbes? Curr. Opin. Plant Biol. 8: 353-360.   DOI
206 Zipfel, C., Kunze, G., Chinchilla, D., Caniard, A., Jones, J. D., Boller, T. and Felix, G. 2006. Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125: 749-760.   DOI
207 Ahn, I. P., Kim, S., Lee, Y. H. and Suh, S. C. 2007. Vitamin B1-induced priming is dependent on hydrogen peroxide and the NPR1 gene in Arabidopsis. Plant Physiol. 143: 838-848.
208 Agrios, G. 2004. Plant pathology. 5th ed., pp. 159-160, 21, 240-241. Elsevier Academic Press, Burlington.
209 Ahmed, S. A., Sanchez, C. P. and Candela, M. E. 2000. Evaluation of induction of systemic resistance in pepper plants (Capsicum annuum) using Trichoderma harzianum and its relation with capsidiol accumulation. Eur. J. Plant Pathol. 106: 817-824.   DOI
210 Ahn, I. P., Kim, S. and Lee, Y. H. 2005. Vitamin B1 functions as an activator of plant disease resistance. Plant Physiol. 138: 1505-1515.   DOI
211 Akira, S. and Takeda, K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499-511.   DOI
212 An, C. and Mou, Z. 2011. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53: 412-428.   DOI
213 Lugtenberg, B. and Kamilova, F. 2009. Plant-growth-promoting rhizobacteria. Annu. Rev. Microbiol. 63: 541-556.   DOI
214 Lindgren, P. B., Peet, R. C. and Panopoulos, N. J. 1986. Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 168: 512-522.   DOI
215 Liu, F., Wei, F., Wang, L., Liu, H., Zhu, X. and Liang, Y. 2010. Riboflavin activates defense responses in tobacco and induces resistance against Phytophthora parasitica and Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 74: 330-336.   DOI
216 Lo, C. T., Liao, T. F. and Deng, T. C. 2000. Induction of systemic resistance of cucumber to cucumber green mosaic virus by the root-colonizing Trichoderma spp. Phytopathology 90: S47.
217 Lund, S. T., Stall, R. E. and Klee, H. J. 1998. Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10: 371-382.   DOI
218 Mabrouk, Y., Mejri, S., Delavault, P., Simier, P. and Belhadj O. 2014. Lipopolysaccharide isolated from Rhizhobium leguminosarum strain P.SOM induces resistance in pea roots against Orobanche crenata. Afr. J. Microbiol. Res. 8: 2624-2630.   DOI
219 Madi, L. and Katan, J. 1998. Penicillium janczewskii and its metabolites, applied to leaves, elicit systemic acquired resistance to stem rot caused by Rhizoctonia solani. Physiol. Mol. Plant Pathol. 53: 163-175.   DOI
220 Maurhofer, M., Hase, C., Meuwly, P., Metraux, J. P. and Defago, G. 1994. Induction of systemic resistance of tobacco to tobacco necrosis virus by the root-colonizing Pseudomonas fluorescens strain CHA0: Influence of the gacA gene and of pyoverdine production. Phytopathology 84: 139-146.   DOI
221 Ayers, A. R., Ebel, J., Finelli, F., Berger, N. and Albersheim, P. 1976. Host-pathogen interactions: IX. Quantitative assays of elicitor activity and characterization of the elicitor present in the extracellular medium of cultures of Phytophthora megasperma var. sojae. Plant Physiol. 57: 751-759.   DOI
222 Anderson, J. P., Lichtenzveig, J., Gleason, C., Oliver, R. P. and Singh, K. B. 2010. The B-3 ethylene response factor MtERF1-1 mediates resistance to a subset of root pathogens in Medicago truncatula without adversely affecting symbiosis with rhizobia. Plant Physiol. 154: 861-873.   DOI
223 Arlat, M., Van Gijsegem, F., Huet, J. C., Pernollet, J. C. and Boucher, C. A. 1994. PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J. 13: 543-553.
224 Ausubel, F. M. 2005. Are innate immune signaling pathways in plants and animals conserved? Nat. Immunol. 6: 973-979.   DOI
225 Azami-Sardooei, Z., Franca, S. C., De Vleesschauwer, D. and Hofte, M. 2010. Riboflavin induces resistance against Botrytis cinerea in bean, but not in tomato, by priming for a hydrogen peroxidefueled resistance response. Physiol. Mol. Plant Pathol. 75: 23-29.   DOI
226 Bakker, P. A., Pieterse, C. M. and van Loon, L. C. 2007. Induced systemic resistance by fluorescent Pseudomonas spp. Phytopathology 97: 239-243.   DOI
227 Balbi, V. and Devoto, A. 2008. Jasmonate signalling network in Arabidopsis thaliana: crucial regulatory nodes and new physiological scenarios. New Phytol. 177: 301-318.
228 Bashan, B. and Cohen, Y. 1982. Tobacco necrosis virus induces systemic resistance in cucumbers. Physiol. Plant Pathol. 23: 137-144.
229 McDowell, J. M. and Dangl, J. L. 2000. Signal transduction in the plant immune response. Trends Biochem. Sci. 25: 79-82.   DOI
230 Maurhofer, M., Reimmann, C., Schmidli-Sacherer, P., Heeb, S., Haas, D. and Defago, G. 1998. Salicylic acid biosynthetic genes expressed in Pseudomonas fluorescens strain P3 improve the induction of systemic resistance in tobacco against tobacco necrosis virus. Phytopathology 88: 678-684.   DOI
231 McKinney, H. H. 1926. Virus mixtures that may not be detected in young tobacco plants. Phytopathology 16: 883.
232 Meyer, A., Puhler, A. and Niehaus, K. 2001. The lipopolysaccharides of the phytopathogen Xanthomonas campestris pv. campestris induce an oxidative burst reaction in cell cultures of Nicotiana tabacum. Planta 213: 214-222.   DOI
233 Miller, M. B. and Bassler, B. L. 2001. Quorum sensing in bacteria. Annu. Rev. Microbiol. 55: 165-199.   DOI
234 Misra, R. S. and Sriram, S. 2002. Medicinal value and export potential of tropical tuber crops. In: Series Recent Progress in Medicinal Plants, Crop Improvement, Production Technology and Commerce, eds. by J. N. Govil, J. Pandey, B. G. Shivkumar and V. K. Singh, pp. 376-386. SCITech, USA.
235 Mithofer, A., Fliegmann, J. and Ebel, J. 1999. Isolation of a French bean (Phaseolus vulgaris L.) homolog to the beta-glucan elicitorbinding protein of soybean (Glycine max L.). Biochim. Biophys. Acta. 1418: 127-132.   DOI
236 Mithofer, A., Fliegmann, J., Neuhaus-Url, G., Schwarz, H. and Ebel, J. 2000. The hepta-beta-glucoside elicitor-binding proteins from legumes represent a putative receptor family. Biol. Chem. 381: 705-713.