• 제목/요약/키워드: molecular adsorption

Search Result 433, Processing Time 0.028 seconds

Room temperature growth of Mg on the Si(111)-7$\times$7 surface studied using STM and LEED

  • Lee, Dohyun;Kim, Sehun;Koo, Ja-Yong;Lee, Geunseop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.150-150
    • /
    • 2000
  • The adsorption geometry and the electronic property of Mg grown at room temperature on the Si(111)-7$\times$7 surface with various coverages have been studied by scanning tunneling microscopy (STM) and low energy electron diffraction (LEED). At low Mg coverage, the Mg atoms preferentially adsorb at the center adatom sites of the faulted half of the Si(111)-7$\times$7 surface. The adsorbed Mg atom acts as nucleophile with respect to Si atoms thus forms a stable ionic bond with the substrate Si atoms. Above 1 Ml, the 7$\times$7 surface starts to be disrupted and an amorphous Mg overlayer is formed. The LEED shows either $\delta$7$\times$7 or 1$\times$1 pattern at this coverage. When more Mg atoms were exposed, a flat and broad {{{{ { 2} over {3 } }}}}{{{{ SQRT { 3} }}}}$\times${{{{ { 2} over {3 } }}}}{{{{ SQRT { 3} }}}}R30$^{\circ}$region evolves. A flat silicide is formed at first and multi-level Mg islands having hexagonal step edges develop with increasing coverage. The scanning tunneling spectroscopy (STS) confirms the electronic properties of these Mg films on the si(111) 7$\times$7 surface at various coverages.

  • PDF

Effects of Cetyltrimethylammonium bromide on the Corrosion Inhibition of a Lead-free α-Brass by Sodium Gluconate in Sulfuric Acid

  • Jennane, Jamila;Touhami, Mohamed Ebn;Zehra, Saman;Chung, Ill-Min;Lgaz, Hassane
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.257-270
    • /
    • 2019
  • The inhibition performance of sodium gluconate (SG), cetyltrimethylammonium bromide (CTAB) and their mixture (SG/CTAB) on the corrosion behavior of ${\alpha}$-brass in 0.5 M $H_2SO_4$ solution has been investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS), Inductively Coupled Plasma Spectrometry (ICPS) and molecular dynamics (MD) simulation techniques. The results reveal that SG with 5ppm CTAB, noted SG/CTAB, acts as a good corrosion inhibitor and its inhibition efficiency reached 89% after 24 h immersion in sulfuric acid solution, but slightly decreased at higher temperatures. The polarization curves displayed that SG/CTAB acts as a cathodic-kind inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that the addition of 5ppm CTAB to different concentrations of SG considerably increases the corrosion resistance of ${\alpha}$-brass. The SEM-EDS and ICPS analyses support the experimental results. Further, molecular dynamics (MD) simulations were used to understand the adsorption profiles of SG/CTAB on Cu(111) and Zn(111) surfaces.

Molecular Dynamics Simulation Studies of Zeolite A. Ⅶ. Structure and Dynamics of $H^+$ ions in a Nom-Rigid Dehydrated H12-A Zeolite Framework

  • 이송희;최상구
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.285-290
    • /
    • 1999
  • In the present paper, we report a molecular dynamics (MD) simulation study for the structure and dynamics of H+ ions in non-rigid dehydrated H12-A zeolite framework at 298.15 K, using the same method we used in our previous studies of rigid and non-rigid zeolite-A frameworks. It is found that two different structures appear, depending on the choice of the Lennard-Jones parameter (σ) for the H+ ion, as is also observed in the study of rigid dehydrated H12-A zeolite framework, but the ranges of σ are different for the two structures. It is also found that some of the H+ ions exchanged their sites without changing the number of H+ ions at each site. The agreement between experimental and calculated structural parameters for non-rigid dehydrated H12-A zeolite is generally quite good. The calculated IR spectrum by Fourier transform of the total dipole moment auto-correlation function shows two major peaks, one around 2700 cm-1 and the other around 7000 cm-1. The former appears in the calculated IR spectra of non-rigid zeolite-A framework only system and the latter remains unexplained except, perhaps, as an indication of a new formation of a vibrational mode of the framework due to the adsorption of the H+ ions.

Analysis of a Gas Mask Using CFD Simulation (CFD모사기법을 이용한 가스 여과기 성능 해석)

  • Jeon, Rakyoung;Kwon, Kihyun;Yoon, Soonmin;Park, Myungkyu;Lee, Changha;Oh, Min
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.475-483
    • /
    • 2019
  • Special chemical warfare agents are lethal gases that attack the human respiratory system. One of such gases are blood agents that react with the irons present in the electron transfer system of the human body. This reaction stops internal respiration and eventually causes death. The molecular sizes of these agents are smaller than the pores of an activated carbon, making chemical adsorption the only alternative method for removing them. In this study, we carried out a Computational Fluid Dynamics simulation by passing a blood agent: cyanogen chloride gas through an SG-1 gas mask canister developed by SG Safety Corporation. The adsorption bed consisted of a Silver-Zinc-Molybdenum-Triethylenediamine activated carbon impregnated with copper, silver, zinc and molybdenum ions. The kinetic analysis of the chemical adsorption was performed in accordance with the test procedure for the gas mask canister and was validated by the kinetic data obtained from experimental results. We predicted the dynamic behaviors of the main variables such as the pressure drop inside the canister and the amount of gas adsorbed by chemisorption. By using a granular packed bed instead of the Ergun equation that is used to model porous materials in Computational Fluid Dynamics, applicable results of the activated carbon were obtained. Dynamic simulations and flow analyses of the chemical adsorption with varying gas flow rates were also executed.

Study of Iodide Adsorption on Organobentonite using X-ray Absorption Spectroscopy (X-선 흡수분광기를 이용한 유기벤토나이트의 요오드 흡착연구)

  • Yoon, Ji-Hae;Ha, Ju-Young;Hwang, Jin-Yeon;Hwang, Byoung-Hoon;Gordon E. Brown, Jr.
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.23-34
    • /
    • 2009
  • The adsorption of iodide on untreated bentonite and bentonites modified with organic cation (i.e., hexadecylpyridinium chloride monohydrate ($HDP^+$)) was investigated, and the organobentonites were characterized using uptake measurements, ${\mu}$-XRD, and electrophoretic mobilities measurement. Uptake measurements indicate that bentonite has a high affinity for $HDP^+$. Our ${\mu}$-XRD study indicates that organobentonites significantly expanded in basal spacing and organic cations were substantially intercalated into the interlayer spaces of bentonite. The electrophoretic mobility indicates that organobentonite tht is modified with organic cations in excess of the CEC of bentonite is completely different from untreated bentonite in the surface charge distribution. We found significant differences in adsorption capacities of iodide depending on the bentonite properties as follows: iodide adsorption capacities were 439 mmol/kg for the bentonite modified with $HDP^+$ at an equivalent amount corresponding to 200% of the CEC of bentonite whereas no adsorption of iodide was observed for the untreated bentonite. The molecular environments of iodine adsorbed on organobentonites were further studied using I K-edge and $L_{III}$-edge x-ray absorption spectroscopy (XAS). The X-ray absorption near-edge structure (XANES) of iodine spectra from organobentonites was similar to that of KI reference solution. Linear combination fitting of EXAFS data suggests the fraction of iodine reacted with the organic compound increased with increasing loading of the organic compound on organobentonites. In this study, we observed significant differences in the adsorption environments of iodide depending on the modified property of bentonite and suggest that an organobentonite has potential as reactive barrier material around a nuclear waste repository containing anionic radioactive iodide.

A Study on Coagulation and MF Membrane Process for the Reuse of Sewage Effluent (하수처리장 방류수의 응집 및 정밀여과 처리공정에 관한 연구)

  • Paik, Ke-Jin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.3 s.57
    • /
    • pp.36-43
    • /
    • 2005
  • Prior to the study of the sewage treatment methods, water quality for Gwangju sewage of fluent was investigated from January to December, 2004 for sewage water reuse. Monthly mean values of BOD, SS, turbidity, total phosphorus and color were 4.1 mg/L, 2.9 mg/L, 0.8 NTU, 1.3 mg/L, and 27 unit, respectively. Jar-test was performed to investigate the removal efficiency of pollutants under the coagulation conditions of fast mixing for 5 min, slow mixing for 15 min and precipitation for 1hr. Here, alum and polyaluminium chloride (PAC) were used as coagulants to reduce color, turbidity, total phosphorus (TP) and total organic carbon (TOC) in sewage effluents. The results showed that PAC gave better efficiency in removing turbidity and dissolved phosphorus than alum. It was also found from the relative molecular weight (RMW) distribution analysis that organic matter over 1,000 Dalton (Da) was easily removed by coagulation and subsequently MF treatment, while it was not effective for less than 500 Da. Based on tis result, Natural organic matter (NOM) with lower molecular weight (< 500 Da) may cause harmful disinfectant by-product (DBP) after chlorine treatment. Thus, activated carbon adsorption seems to be required for the complete removal of DBP in the hybrid system.

A New Gas-Chromatograghic Method of Organic Elemental Analysis (가스크로마토그래피에 依한 微量元素分析)

  • Kim, You-Sun;Son, Youn-Soo;Choi, Q.Won
    • Journal of the Korean Chemical Society
    • /
    • v.8 no.4
    • /
    • pp.188-191
    • /
    • 1964
  • A new gas-chromatographic method for determining carbon and hydrogen in organic compounds has been developed. After sample combustion was performed in a regular analytical combustion tube with an internal oxidant (a mixture of silver oxide and manganese dioxide) under a helium flow, the water produced was converted to acetylene by passing through a calcium carbide tube. The carbon dioxide and acetylene were trapped by a molecular sieve 5A column at room temperature. The trapped gases were released under programmed temperature raise up to $340^{\circ}C$ and the released gases were passed through a silica gel column. The adsorption of $CO_2$ and $C_2H_2$ in the molecular sieve 5A trapping column were found to be quantitative and the silica gel column showed an excellent resolution of $CO_2$ and $C_2H_2$ for analytical purpose. The analytical results for various known compounds based on the out-put of the thermal conductivity cell calibrated for the amounts of carbon and hydrogen contents in benzoic acid, showed average errors ${\pm}0.5%$ and ${\pm}0.33%$ for carbon and hydrogen, respectively.

  • PDF

Investigation of morphological changes of HPS membrane caused by cecropin B through scanning electron microscopy and atomic force microscopy

  • Hu, Han;Jiang, Changsheng;Zhang, Binzhou;Guo, Nan;Li, Zhonghua;Guo, Xiaozhen;Wang, Yang;Liu, Binlei;He, Qigai
    • Journal of Veterinary Science
    • /
    • v.22 no.5
    • /
    • pp.59.1-59.13
    • /
    • 2021
  • Background: Antimicrobial peptides (AMPs) have been identified as promising compounds for consideration as novel antimicrobial agents. Objectives: This study analyzed the efficacy of cecropin B against Haemophilus parasuis isolates through scanning electron microscopy (SEM) and atomic force microscopy (AFM) experiments. Results: Cecropin B exhibited broad inhibition activity against 15 standard Haemophilus parasuis (HPS) strains and 5 of the clinical isolates had minimum inhibition concentrations (MICs) ranging from 2 to 16 ㎍/mL. Microelectrophoresis and hexadecane adsorption assays indicated that the more hydrophobic and the higher the isoelectric point (IEP) of the strain, the more sensitive it was to cecropin B. Through SEM, multiple blisters of various shapes and dents on the cell surface were observed. Protrusions and leakage were detected by AFM. Conclusions: Based on the results, cecropin B could inhibit HPS via a pore-forming mechanism by interacting with the cytoplasmic membrane of bacteria. Moreover, as cecropin B concentration increased, the bacteria membrane was more seriously damaged. Thus, cecropin B could be developed as an effective anti-HPS agent for use in clinical applications.

A Molecular Dynamics Simulation Study on the Thermoelastic Properties of Poly-lactic Acid Stereocomplex Nanocomposites (분자동역학 전산모사를 이용한 폴리유산 스테레오 콤플렉스 나노복합재의 가수분해에 따른 열탄성 물성 예측 연구)

  • Ki, Yelim;Lee, Man Young;Yang, Seunghwa
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.371-378
    • /
    • 2018
  • In this study, the thermoelastic properties of poly lactic acid (PLA) based nanocomposites are predicted by molecular dynamics (MD) simulation and a micromechanics model. The stereocomplex mixed with L-lactic acid (PLLA) and D-lactic acid (PDLA) is modeled as matrix phase and a single walled carbon nanotube is embedded as reinforcement. The glass transition temperature, elastic moduli and thermal expansion coefficients of pure matrix and nanocomposites unit cells are predicted though ensemble simulations according to the hydrolysis. In micromechanics model, the double inclusion (D-I) model with a perfect interface condition is adopted to predict the properties of nanocomposites at the same composition. It is found that the stereocomplex nanocomposites show prominent improvement in thermal stability and interfacial adsorption regardless of the hydrolysis. Moreover, it is confirmed from the comparison of MD simulation results with those from the D-I model that the interface between CNT and the stereocomplex matrix is slightly weak in nature.

Minor Coat Protein pIII Domain (N1N2) of Bacteriophage CTXф Confers a Novel Surface Plasmon Resonance Biosensor for Rapid Detection of Vibrio cholerae

  • Shin, Hae Ja;Hyeon, Seok Hywan;Cho, Jae Ho;Lim, Woon Ki
    • Microbiology and Biotechnology Letters
    • /
    • v.49 no.4
    • /
    • pp.510-518
    • /
    • 2021
  • Bacteriophages are considered excellent sensing elements for platforms detecting bacteria. However, their lytic cycle has restricted their efficacy. Here, we used the minor coat protein pIII domain (N1N2) of phage CTXφ to construct a novel surface plasmon resonance (SPR) biosensor that could detect Vibrio cholerae. N1N2 harboring the domains required for phage adsorption and entry was obtained from Escherichia coli using recombinant protein expression and purification. SDS-PAGE revealed an approximate size of 30 kDa for N1N2. Dot blot and transmission electron microscopy analyses revealed that the protein bound to the host V. cholerae but not to non-host E. coli K-12 cells. Next, we used amine-coupling to develop a novel recombinant N1N2 (rN1N2)-functionalized SPR biosensor by immobilizing rN1N2 proteins on gold substrates and using SPR to monitor the binding kinetics of the proteins with target bacteria. We observed rapid detection of V. cholerae in the range of approximately 103 to 109 CFU/ml but not of E. coli at any tested concentration, thereby confirming that the biosensor exhibited differential recognition and binding. The results indicate that the novel biosensor can rapidly monitor a target pathogenic microorganism in the environment and is very useful for monitoring food safety and facilitating early disease prevention.