Investigation of morphological changes of HPS membrane caused by cecropin B through scanning electron microscopy and atomic force microscopy |
Hu, Han
(National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology)
Jiang, Changsheng (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) Zhang, Binzhou (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) Guo, Nan (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) Li, Zhonghua (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) Guo, Xiaozhen (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) Wang, Yang (National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology) Liu, Binlei (National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology) He, Qigai (State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University) |
1 | Gazit E, Miller IR, Biggin PC, Sansom MS, Shai Y. Structure and orientation of the mammalian antibacterial peptide cecropin P1 within phospholipid membranes. J Mol Biol. 1996;258(5):860-870. DOI |
2 | Pelletier C, Bouley C, Cayuela C, Bouttier S, Bourlioux P, Bellon-Fontaine MN. Cell surface characteristics of Lactobacillus casei subsp. casei, Lactobacillus paracasei subsp. paracasei, and Lactobacillus rhamnosus strains. Appl Environ Microbiol. 1997;63(5):1725-1731. DOI |
3 | Chen HM, Wang W, Smith D, Chan SC. Effects of the anti-bacterial peptide cecropin B and its analogs, cecropins B-1 and B-2, on liposomes, bacteria, and cancer cells. Biochim Biophys Acta. 1997;1336(2):171-179. DOI |
4 | Shwaiki LN, Sahin AW, Arendt EK. Study on the inhibitory activity of a synthetic defensin derived from barley endosperm against common food spoilage yeast. Molecules. 2020;26(1):165. DOI |
5 | Ziaja M, Dziedzic A, Szafraniec K, Piastowska-Ciesielska A. Cecropins in cancer therapies-where we have been? Eur J Pharmacol. 2020;882:173317. DOI |
6 | Hale JD, Hancock RE. Alternative mechanisms of action of cationic antimicrobial peptides on bacteria. Expert Rev Anti Infect Ther. 2007;5(6):951-959. DOI |
7 | Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000;8(9):402-410. DOI |
8 | Mchaourab HS, Hyde JS, Feix JB. Aggregation state of spin-labeled cecropin AD in solution. Biochemistry. 1993;32(44):11895-11902. DOI |
9 | Hu H, Wang C, Guo X, Li W, Wang Y, He Q. Broad activity against porcine bacterial pathogens displayed by two insect antimicrobial peptides moricin and cecropin B. Mol Cells. 2013;35(2):106-114. DOI |
10 | Liang X, Zhang X, Lian K, Tian X, Zhang M, Wang S, et al. Antiviral effects of Bovine antimicrobial peptide against TGEV in vivo and in vitro. J Vet Sci. 2020;21(5):e80. DOI |
11 | Steiner H, Hultmark D, Engstrom A, Bennich H, Boman HG. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature. 1981;292(5820):246-248. DOI |
12 | Romoli O, Mukherjee S, Mohid SA, Dutta A, Montali A, Franzolin E, et al. Enhanced silkworm cecropin B antimicrobial activity against Pseudomonas aeruginosa from single amino acid variation. ACS Infect Dis. 2019;5(7):1200-1213. DOI |
13 | Saviane A, Romoli O, Bozzato A, Freddi G, Cappelletti C, Rosini E, et al. Intrinsic antimicrobial properties of silk spun by genetically modified silkworm strains. Transgenic Res. 2018;27(1):87-101. DOI |
14 | Rangarajan N, Bakshi S, Weisshaar JC. Localized permeabilization of E. coli membranes by the antimicrobial peptide Cecropin A. Biochemistry. 2013;52(38):6584-6594. DOI |
15 | Zhang P, Zhang C, Aragon V, Zhou X, Zou M, Wu C, et al. Investigation of Haemophilus parasuis from healthy pigs in China. Vet Microbiol. 2019;231:40-44. DOI |
16 | Liu D, Liu J, Li J, Xia L, Yang J, Sun S, et al. A potential food biopreservative, CecXJ-37N, non-covalently intercalates into the nucleotides of bacterial genomic DNA beyond membrane attack. Food Chem. 2017;217:576-584. DOI |
17 | Chen HM, Chan SC, Lee JC, Chang CC, Murugan M, Jack RW. Transmission electron microscopic observations of membrane effects of antibiotic cecropin B on Escherichia coli. Microsc Res Tech. 2003;62(5):423-430. DOI |
18 | Sharma A, Sharma R, Imamura M, Yamakawa M, Machii H. Transgenic expression of cecropin B, an antibacterial peptide from Bombyx mori, confers enhanced resistance to bacterial leaf blight in rice. FEBS Lett. 2000;484(1):7-11. DOI |
19 | Gregory SM, Cavenaugh A, Journigan V, Pokorny A, Almeida PF. A quantitative model for the all-ornone permeabilization of phospholipid vesicles by the antimicrobial peptide cecropin A. Biophys J. 2008;94(5):1667-1680. DOI |
20 | Giacometti A, Cirioni O, Del Prete MS, Paggi AM, D'Errico MM, Scalise G. Combination studies between polycationic peptides and clinically used antibiotics against Gram-positive and Gram-negative bacteria. Peptides. 2000;21(8):1155-1160. DOI |
21 | Kielstein P, Rapp-Gabrielson VJ. Designation of 15 serovars of Haemophilus parasuis on the basis of immunodiffusion using heat-stable antigen extracts. J Clin Microbiol. 1992;30(4):862-865. DOI |
22 | Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science. 2020;368(6490):eaau5480. DOI |
23 | Wu Q, Patocka J, Kuca K. Insect antimicrobial peptides, a mini review. Toxins (Basel). 2018;10(11):461. DOI |
24 | Wu JM, Jan PS, Yu HC, Haung HY, Fang HJ, Chang YI, et al. Structure and function of a custom anticancer peptide, CB1a. Peptides. 2009;30(5):839-848. DOI |
25 | Santa-Gonzalez GA, Patino-Gonzalez E, Manrique-Moreno M. Synthetic peptide ΔM4-induced cell death associated with cytoplasmic membrane disruption, mitochondrial dysfunction and cell cycle arrest in human melanoma cells. Molecules. 2020;25(23):5684. DOI |
26 | Lyu Y, Fitriyanti M, Narsimhan G. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Colloids Surf B Biointerfaces. 2019;173:121-127. DOI |
27 | Dennison SR, Mura M, Harris F, Morton LH, Zvelindovsky A, Phoenix DA. The role of C-terminal amidation in the membrane interactions of the anionic antimicrobial peptide, maximin H5. Biochim Biophys Acta. 2015;1848(5):1111-1118. DOI |
28 | Hancock RE. Peptide antibiotics. Lancet. 1997;349(9049):418-422. DOI |
29 | Ghiselli R, Giacometti A, Cirioni O, Mocchegiani F, Orlando F, D'Amato G, et al. Cecropin B enhances betalactams activities in experimental rat models of gram-negative septic shock. Ann Surg. 2004;239(2):251-256. DOI |
30 | Liu H, Xue Q, Zeng Q, Zhao Z. Haemophilus parasuis vaccines. Vet Immunol Immunopathol. 2016;180:53-58. DOI |
31 | Xia L, Liu Z, Ma J, Sun S, Yang J, Zhang F. Expression, purification and characterization of cecropin antibacterial peptide from Bombyx mori in Saccharomyces cerevisiae. Protein Expr Purif. 2013;90(1):47-54. DOI |