Acknowledgement
This work was supported by a grant from the Basic Science Research Program (2016R1D1A1B01015961) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Republic of Korea.
References
- Bonnin-Jusserand M, Copin S, Le Bris C, Brauge T, Gay M, Brisabois A, et al. 2019. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit. Rev. Food Sci. Nutr. 59: 597-610. https://doi.org/10.1080/10408398.2017.1384715
- Faruque SM, Mekalanos JJ. 2012. Phage-bacterial interactions in the evolution of toxigenic Vibrio cholerae. Virulence 3: 556-565. https://doi.org/10.4161/viru.22351
- Lazcka O, Del Campo FJ, Munoz FX. 2007. Pathogen detection: a perspective of traditional methods and biosensors. Biosens. Bioelectron. 22: 1205-1217. https://doi.org/10.1016/j.bios.2006.06.036
- Dwivedi HP, Jaykus LA. 2011. Detection of pathogens in foods: the current state-of-the-art and future directions. Crit. Rev. Microbiol. 37: 40-63. https://doi.org/10.3109/1040841X.2010.506430
- D'Souza SF. 2001. Microbial biosensors. Biosens. Bioelectron. 16: 337-353. https://doi.org/10.1016/S0956-5663(01)00125-7
- Belkin S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6: 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
- Shin HJ. 2011. Genetically engineered microbial biosensors for in situ monitoring of environmental pollution. Appl. Microbiol. Biotechnol. 89: 867-877. https://doi.org/10.1007/s00253-010-2990-8
- Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E. 1999. Biosensors for detection of pathogenic bacteria. Biosens. Bioelectron. 14: 599-624. https://doi.org/10.1016/S0956-5663(99)00039-1
- Singh A, Arya SK, Glass N, Hanifi-Moghaddam P, Naidoo R, Szymanski CM, et al. 2010. Bacteriophage tailspike proteins as molecular probes for sensitive and selective bacterial detection. Biosens. Bioelectron. 26: 131-138. https://doi.org/10.1016/j.bios.2010.05.024
- Singh A, Poshtiban S, Evoy S. 201. Recent advances in bacteriophage based biosensors for food-borne pathogen detection. Sensors-Basel. 13: 1763-1786. https://doi.org/10.3390/s130201763
- Jelinek R, Kolusheva S. 2004. Carbohydrate biosensors. Chem. Rev. 104: 5987-6015. https://doi.org/10.1021/cr0300284
- Elsholz B, Worl R, Blohm L, Albers J, Feucht H, Grunwald T, et al. 2006. Automated detection and quantitation of bacterial RNA by using electrical microarrays. Anal. Chem. 78: 4794-4802. https://doi.org/10.1021/ac0600914
- Torres-Chavolla E, Alocilja EC. 2009. Aptasensors for detection of microbial and viral pathogens. Biosens. Bioelectron. 24: 3175-3182. https://doi.org/10.1016/j.bios.2008.11.010
- Dover JE, Hwang GM, Mullen EH, Prorok BC, Suh SJ. 2009. Recent advances in peptide probe-based biosensors for detection of infectious agents. J. Microbiol. Methods 78: 10-19. https://doi.org/10.1016/j.mimet.2009.04.008
- Ilic B, Czaplewski D, Craighead HG, Neuzil P, Campagnolo C, Batt C. 2000. Mechanical resonant immunospecific biological detector. Appl. Phys. Lett. 77: 450-452. https://doi.org/10.1063/1.127006
- Shin HJ, Park HH, Lim WK. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119: 36-43. https://doi.org/10.1016/j.jbiotec.2005.06.002
- Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL. 2007. Lytic phage as a specific and selective probe for detection of Staphylococcus aureus-A surface plasmon resonance spectroscopic study. Biosens. Bioelectron. 22: 948-955. https://doi.org/10.1016/j.bios.2006.04.003
- Lee DY, Jeong IY, Park DS, Shin HJ. 2014. Electrochemical biosensing of salicylate by recombinant Escherichia coli cells immobilized in polyvinyl alcohol beads. Sensor. Mater. 26: 665-675.
- Shin HJ, Lim WK. 2016. Comparative evaluation of an electrochemical bioreporter for detecting phenolic compounds. Prep. Biochem. Biotechnol. 46: 71-77. https://doi.org/10.1080/10826068.2014.979207
- Tawil N, Sacher E, Mandeville R, Meunier M. 2012. Surface plasmon resonance detection of E. coli and methicillin-resistant S. aureus using bacteriophages. Biosens. Bioelectron. 37: 24-29. https://doi.org/10.1016/j.bios.2012.04.048
- Gervais L, Gel M, Allain B, Tolba M, Brovko L, Zourob M, et al. 2007. Immobilization of biotinylated bacteriophages on biosensor surfaces. Sensor. Actuat. B-Chem. 125: 615-621. https://doi.org/10.1016/j.snb.2007.03.007
- Nanduri V, Sorokulova IB, Samoylov AM, Simonian AL, Petrenko VA, Vodyanoy V. 2007. Phage as a molecular recognition element in biosensors immobilized by physical adsorption. Biosens. Bioelectron. 22: 986-992. https://doi.org/10.1016/j.bios.2006.03.025
- Huang S, Li SQ, Yang H, Johnson M, Wan J, Chen I. 2008. Optimization of phage-based magnetoelastic biosensor performance. Sensor. Transl. Med. 3: 87-96.
- Singh A, Glass N, Tolba M, Brovko L, Griffiths M, Evoy, S. 2009. Immobilization of bacteriophages on gold surfaces for the specific capture of pathogens. Biosens. Bioelectron. 24: 3645-3651. https://doi.org/10.1016/j.bios.2009.05.028
- Singh A, Arutyunov D, McDermott MT, Szymanski CM, Evoy S. 2011. Specific detection of Campylobacter jejuni using the bacteriophage NCTC 12673 receptor binding protein as a probe. Analyst 136: 4780-4786. https://doi.org/10.1039/c1an15547d
- Dutt S, Tanha J, Evoy S, Singh A. 2013. Immobilization of P22 bacteriophage Tailspike protein on Si surface for optimized Salmonella capture. J. Anal. Bioanal. Tech. http://doi:10.4172/2155-9872.S7-007.
- Shin HJ, Lim WK. 2018. Rapid label-free detection of E. coli using a novel SPR biosensor containing a fragment of tail protein from phage lambda. Prep. Biochem. Biotechnol. 48: 498-505. https://doi.org/10.1080/10826068.2018.1466154
- Hyeon SH, Lim WK, Shin HJ. 2020. Novel surface plasmon resonance biosensor that uses full-length Det7 phage tail protein for rapid and selective detection of Salmonella enterica serovar Typhimurium. Biotechnol. Appl. Biochem. 68: 5-12. https://doi.org/10.1002/bab.1883
- Faruque SM, Albert MJ, Mekalanos JJ. 1998. Epidemiology, genetics, and ecology of toigenic Vibrio cholerae. Microbiol. Mol. Biol. 62: 1301-1314. https://doi.org/10.1128/MMBR.62.4.1301-1314.1998
- Heilpern AJ, Waldor MK. 2003. pIIICTX, a predicted CTXφ minor coat protein, can expand the host range of Coliphage fd to include Vibrio cholerae. J. Bacteriol. 185: 1037-1044. https://doi.org/10.1128/JB.185.3.1037-1044.2003
- Ford CG, Kolappan S, Phan HTH, Waldor MK, Winther-Larsen HC, Craig L. 2012. Crystal structures of a CTXφ pIII domain unbound and in complex with a Vibrio cholerae TolA domain reveal novel interaction interfaces. J. Biol. Chem. 287: 36258-36272. https://doi.org/10.1074/jbc.M112.403386
- Rakonjac J, Model P. 1998. Roles of pIII in filamentous phage assembly. J. Mol. Biol. 282: 25-41. https://doi.org/10.1006/jmbi.1998.2006
- Sambrook J, Fritsch EF, Maniatis T. 2001. Molecular Cloning: a laboratory manual, 3rd Edition, CSHL Press, New York.