Browse > Article
http://dx.doi.org/10.33961/jecst.2019.03167

Effects of Cetyltrimethylammonium bromide on the Corrosion Inhibition of a Lead-free α-Brass by Sodium Gluconate in Sulfuric Acid  

Jennane, Jamila (Laboratoire d'ingenierie des Materiaux et d'Environnement: Modelisation et Application, Faculte des Sciences, Universite Ibn Tofail)
Touhami, Mohamed Ebn (Laboratoire d'ingenierie des Materiaux et d'Environnement: Modelisation et Application, Faculte des Sciences, Universite Ibn Tofail)
Zehra, Saman (Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University)
Chung, Ill-Min (Department of Crop Science, College of Sanghur Life Science, Konkuk University)
Lgaz, Hassane (Department of Crop Science, College of Sanghur Life Science, Konkuk University)
Publication Information
Journal of Electrochemical Science and Technology / v.10, no.3, 2019 , pp. 257-270 More about this Journal
Abstract
The inhibition performance of sodium gluconate (SG), cetyltrimethylammonium bromide (CTAB) and their mixture (SG/CTAB) on the corrosion behavior of ${\alpha}$-brass in 0.5 M $H_2SO_4$ solution has been investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS), Inductively Coupled Plasma Spectrometry (ICPS) and molecular dynamics (MD) simulation techniques. The results reveal that SG with 5ppm CTAB, noted SG/CTAB, acts as a good corrosion inhibitor and its inhibition efficiency reached 89% after 24 h immersion in sulfuric acid solution, but slightly decreased at higher temperatures. The polarization curves displayed that SG/CTAB acts as a cathodic-kind inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that the addition of 5ppm CTAB to different concentrations of SG considerably increases the corrosion resistance of ${\alpha}$-brass. The SEM-EDS and ICPS analyses support the experimental results. Further, molecular dynamics (MD) simulations were used to understand the adsorption profiles of SG/CTAB on Cu(111) and Zn(111) surfaces.
Keywords
Brass; Corrosion Inhibition; Computer Simulations; Sodium Gluconate; Cetyltrimethyl Ammonium Bromide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Azzaoui, E. Mejdoubi, S. Jodeh, A. Lamhamdi, E. Rodriguez-Castellon, M. Algarra, A. Zarrouk, A. Errich, R. Salghi, and H. Lgaz, Corros. Sci., 2017, 129, 70-81.   DOI
2 M. Mobin, M. Parveen, and M.Z.A. Rafiquee, Arab. J. Chem., 2017, 10, S1364-S1372.   DOI
3 M. Rashid, U.S. Waware, A. A. Rahim, and A. m. s. Hamouda, Anti-Corros. Methods Mater., 2018, 65(2), 146-151.   DOI
4 J. Liu, Z. Wang, W. Yang, and X. Zhou, J. Surfactants Deterg., 2016, 19(6), 1297-1304.   DOI
5 R. Touir, N. Dkhireche, M. Ebn Touhami, M. El Bakri, A.H. Rochdi, and R.A. Belakhmima, J. Saudi Chem. Soc., 2014, 18(6), 873-881.   DOI
6 R.A. Belakhmima, N. Dkhireche, R. Touir, and M. Ebn Touhami, Mater. Chem. Phys., 2015, 152, 85-94.   DOI
7 M.A. Azaroual, H. El, R. Touir, A. Rochdi, and M.E. Touhami, J. Mol. Liq., 2016, 220, 549-557.   DOI
8 K. Zhang, W. Yang, X. Yin, Y. Chen, Y. Liu, J. Le, and B. Xu, Carbohydr. Polym., 2018, 181, 191-199.   DOI
9 H. Lgaz, R. Salghi, K. Subrahmanya Bhat, A. Chaouiki, Shubhalaxmi, and S. Jodeh, J. Mol. Liq., 2017, 244, 154-168.   DOI
10 R. Kumar, S. Chahal, S. Kumar, S. Lata, H. Lgaz, R. Salghi, and S. Jodeh, J. Mol. Liq., 2017, 243, 439-450.   DOI
11 D.I. Njoku, Y. Li, H. Lgaz, and E.E. Oguzie, J. Mol. Liq., 2018, 249, 371-388.   DOI
12 M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, Revision D. 01, 2009.
13 D. Rigby, Fluid Phase Equilibria, 2004, 217(1), 77-87.   DOI
14 K.F. Khaled, Appl. Surf. Sci., 2008, 255(5), 1811-1818.   DOI
15 A.S. Fouda, M.A. Ismael, S. Abo, L.A. Kamel, and A.A. El-Nagggar, Int. J. Electrochem. Sci., 2017, 12, 3361-3384.
16 Z. Fan, Z. Wang, J. Liu, T. Huang, and P. Zhong, Nat. Gas Ind., 2017, 37(6), 86-92.
17 P. Jinturkar, Y.C. Guan, and K.N. Han, CORROSION, 1998, 54(2), 106-114.   DOI
18 O.A. Abdullatef and R.M. Farid, Russ. J. Appl. Chem., 2017, 90(11), 1866-1875.   DOI
19 M. Ebrahimzadeh, M. Gholami, M. Momeni, A. Kosari, M.H. Moayed, and A. Davoodi, Appl. Surf. Sci., 2015, 332, 384-392.   DOI
20 Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, and S. Meghdadi, Corros. Sci., 2017, 114, 133-145.   DOI
21 S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, and P. Banerjee, Phys. Chem. Chem. Phys., 2015, 17(8), 5679-5690.   DOI
22 M.M. Solomon, H. Gerengi, and S.A. Umoren, ACS Appl. Mater. Interfaces, 2017, 9(7), 6376-6389.   DOI
23 M. Mobin, R. Aslam, and J. Aslam, Mater. Chem. Phys., 2017, 191, 151-167.   DOI
24 C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi, and I.B. Obot, J. Phys. Chem. C, 2016, 120(21), 11598-11611.   DOI
25 S. Zehra, M. Mobin, J. Aslam, and M. Parveen, J. Adhes. Sci. Technol., 2018, 32(3), 317-342.   DOI
26 H. Ma, S. Chen, B. Yin, S. Zhao, X. Liu, Corros. Sci., 2003, 45(5), 867-882.   DOI
27 L.L. Liao, S. Mo, H.Q. Luo, and N.B. Li, J. Colloid Interface Sci., 2018, 520, 41-49.   DOI
28 J. Zhang, X. Zhang, C. Wang, H. Xv, and B. Hou, Beijing Huagong Daxue Xuebao Ziran KexuebanJournal Beijing Univ. Chem. Technol. Nat. Sci. Ed., 2017, 44(2), 26-34.
29 H. Lgaz, K. Subrahmanya Bhat, R. Salghi, Shubhalaxmi, S. Jodeh, M. Algarra, B. Hammouti, I.H. Ali, and A. Essamri, J. Mol. Liq., 2017, 238, 71-83.   DOI
30 R. Kumar, S. Chahal, S. Kumar, S. Lata, H. Lgaz, R. Salghi, and S. Jodeh, J. Mol. Liq., 2017, 243, 439-450.   DOI
31 A. Soni, P. Sharma, Monika, R. Dashora, and A.K. Goswami, Port. Electrochimica Acta, 2017, 35(2), 117-126.   DOI
32 R.M. El-Sherif, K.M. Ismail, and W.A. Badawy, Electrochimica Acta, 2004, 49(28), 5139-5150.   DOI
33 B. Assouli, A. Srhiri, and H. Idrissi, NDT E Int., 2003, 36(2), 117-126.   DOI
34 S. Mamas, T. Kiyak, M. Kabasakaloglu, and A. Koc, Mater. Chem. Phys., 2005, 93(1), 41-47.   DOI
35 C.-G. Park, J.-G. Kim, Y.-M. Chung, J.-G. Han, S.-H. Ahn, and C.-H. Lee, Surf. Coat. Technol., 2005, 200(1-4), 77-82.   DOI
36 H. Lgaz, K. Subrahmanya Bhat, R. Salghi, Shubhalaxmi, S. Jodeh, M. Algarra, B. Hammouti, I.H. Ali, and A. Essamri, J. Mol. Liq., 2017, 238, 71-83.   DOI
37 A.M. El-Shamy, M.F. Shehata, H.I.M. Metwally, and A. Melegy, Silicon, 2018, 10(6), 2809-2815.   DOI
38 O.S.I. Fayomi and A.P.I. Popoola, Silicon, 2014, 6(2), 137-143.   DOI
39 T.K. Bhuvaneswari, V.S. Vasantha, and C. Jeyaprabha, Silicon, 2018, 10(5), 1793-1807.   DOI
40 R.T. Loto, C.A. Loto, A.P. Popoola, and T. Fedotova, Silicon, 2016, 8(1), 145-158.   DOI
41 M. Yadav, D. Behera, S. Kumar, and R.R. Sinha, Ind. Eng. Chem. Res., 2013, 52(19), 6318-6328.   DOI
42 A. Singh, K.R. Ansari, J. Haque, P. Dohare, H. Lgaz, R. Salghi, and M.A. Quraishi, J. Taiwan Inst. Chem. Eng., 2018, 82, 233-251.   DOI