DOI QR코드

DOI QR Code

Effects of Cetyltrimethylammonium bromide on the Corrosion Inhibition of a Lead-free α-Brass by Sodium Gluconate in Sulfuric Acid

  • Jennane, Jamila (Laboratoire d'ingenierie des Materiaux et d'Environnement: Modelisation et Application, Faculte des Sciences, Universite Ibn Tofail) ;
  • Touhami, Mohamed Ebn (Laboratoire d'ingenierie des Materiaux et d'Environnement: Modelisation et Application, Faculte des Sciences, Universite Ibn Tofail) ;
  • Zehra, Saman (Corrosion Research Laboratory, Department of Applied Chemistry, Faculty of Engineering and Technology, Aligarh Muslim University) ;
  • Chung, Ill-Min (Department of Crop Science, College of Sanghur Life Science, Konkuk University) ;
  • Lgaz, Hassane (Department of Crop Science, College of Sanghur Life Science, Konkuk University)
  • Received : 2018.12.17
  • Accepted : 2019.02.26
  • Published : 2019.09.30

Abstract

The inhibition performance of sodium gluconate (SG), cetyltrimethylammonium bromide (CTAB) and their mixture (SG/CTAB) on the corrosion behavior of ${\alpha}$-brass in 0.5 M $H_2SO_4$ solution has been investigated by potentiodynamic polarization, electrochemical impedance spectroscopy (EIS), Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS), Inductively Coupled Plasma Spectrometry (ICPS) and molecular dynamics (MD) simulation techniques. The results reveal that SG with 5ppm CTAB, noted SG/CTAB, acts as a good corrosion inhibitor and its inhibition efficiency reached 89% after 24 h immersion in sulfuric acid solution, but slightly decreased at higher temperatures. The polarization curves displayed that SG/CTAB acts as a cathodic-kind inhibitor. Electrochemical impedance spectroscopy (EIS) studies revealed that the addition of 5ppm CTAB to different concentrations of SG considerably increases the corrosion resistance of ${\alpha}$-brass. The SEM-EDS and ICPS analyses support the experimental results. Further, molecular dynamics (MD) simulations were used to understand the adsorption profiles of SG/CTAB on Cu(111) and Zn(111) surfaces.

Keywords

References

  1. A.S. Fouda, M.A. Ismael, S. Abo, L.A. Kamel, and A.A. El-Nagggar, Int. J. Electrochem. Sci., 2017, 12, 3361-3384.
  2. Z. Fan, Z. Wang, J. Liu, T. Huang, and P. Zhong, Nat. Gas Ind., 2017, 37(6), 86-92.
  3. J. Zhang, X. Zhang, C. Wang, H. Xv, and B. Hou, Beijing Huagong Daxue Xuebao Ziran KexuebanJournal Beijing Univ. Chem. Technol. Nat. Sci. Ed., 2017, 44(2), 26-34.
  4. A. Soni, P. Sharma, Monika, R. Dashora, and A.K. Goswami, Port. Electrochimica Acta, 2017, 35(2), 117-126. https://doi.org/10.4152/pea.201702117
  5. R.M. El-Sherif, K.M. Ismail, and W.A. Badawy, Electrochimica Acta, 2004, 49(28), 5139-5150. https://doi.org/10.1016/j.electacta.2004.06.027
  6. B. Assouli, A. Srhiri, and H. Idrissi, NDT E Int., 2003, 36(2), 117-126. https://doi.org/10.1016/S0963-8695(02)00102-0
  7. S. Mamas, T. Kiyak, M. Kabasakaloglu, and A. Koc, Mater. Chem. Phys., 2005, 93(1), 41-47. https://doi.org/10.1016/j.matchemphys.2005.02.012
  8. C.-G. Park, J.-G. Kim, Y.-M. Chung, J.-G. Han, S.-H. Ahn, and C.-H. Lee, Surf. Coat. Technol., 2005, 200(1-4), 77-82. https://doi.org/10.1016/j.surfcoat.2005.02.152
  9. H. Lgaz, K. Subrahmanya Bhat, R. Salghi, Shubhalaxmi, S. Jodeh, M. Algarra, B. Hammouti, I.H. Ali, and A. Essamri, J. Mol. Liq., 2017, 238, 71-83. https://doi.org/10.1016/j.molliq.2017.04.124
  10. A.M. El-Shamy, M.F. Shehata, H.I.M. Metwally, and A. Melegy, Silicon, 2018, 10(6), 2809-2815. https://doi.org/10.1007/s12633-018-9821-4
  11. T.K. Bhuvaneswari, V.S. Vasantha, and C. Jeyaprabha, Silicon, 2018, 10(5), 1793-1807. https://doi.org/10.1007/s12633-017-9673-3
  12. R.T. Loto, C.A. Loto, A.P. Popoola, and T. Fedotova, Silicon, 2016, 8(1), 145-158. https://doi.org/10.1007/s12633-015-9344-1
  13. O.S.I. Fayomi and A.P.I. Popoola, Silicon, 2014, 6(2), 137-143. https://doi.org/10.1007/s12633-014-9177-3
  14. M. Yadav, D. Behera, S. Kumar, and R.R. Sinha, Ind. Eng. Chem. Res., 2013, 52(19), 6318-6328. https://doi.org/10.1021/ie400099q
  15. A. Singh, K.R. Ansari, J. Haque, P. Dohare, H. Lgaz, R. Salghi, and M.A. Quraishi, J. Taiwan Inst. Chem. Eng., 2018, 82, 233-251. https://doi.org/10.1016/j.jtice.2017.09.021
  16. K. Azzaoui, E. Mejdoubi, S. Jodeh, A. Lamhamdi, E. Rodriguez-Castellon, M. Algarra, A. Zarrouk, A. Errich, R. Salghi, and H. Lgaz, Corros. Sci., 2017, 129, 70-81. https://doi.org/10.1016/j.corsci.2017.09.027
  17. M. Mobin, M. Parveen, and M.Z.A. Rafiquee, Arab. J. Chem., 2017, 10, S1364-S1372. https://doi.org/10.1016/j.arabjc.2013.04.006
  18. M. Rashid, U.S. Waware, A. A. Rahim, and A. m. s. Hamouda, Anti-Corros. Methods Mater., 2018, 65(2), 146-151. https://doi.org/10.1108/ACMM-10-2015-1589
  19. J. Liu, Z. Wang, W. Yang, and X. Zhou, J. Surfactants Deterg., 2016, 19(6), 1297-1304. https://doi.org/10.1007/s11743-016-1863-2
  20. R. Touir, N. Dkhireche, M. Ebn Touhami, M. El Bakri, A.H. Rochdi, and R.A. Belakhmima, J. Saudi Chem. Soc., 2014, 18(6), 873-881. https://doi.org/10.1016/j.jscs.2011.10.020
  21. R.A. Belakhmima, N. Dkhireche, R. Touir, and M. Ebn Touhami, Mater. Chem. Phys., 2015, 152, 85-94. https://doi.org/10.1016/j.matchemphys.2014.12.018
  22. M.A. Azaroual, H. El, R. Touir, A. Rochdi, and M.E. Touhami, J. Mol. Liq., 2016, 220, 549-557. https://doi.org/10.1016/j.molliq.2016.04.117
  23. K. Zhang, W. Yang, X. Yin, Y. Chen, Y. Liu, J. Le, and B. Xu, Carbohydr. Polym., 2018, 181, 191-199. https://doi.org/10.1016/j.carbpol.2017.10.069
  24. H. Lgaz, R. Salghi, K. Subrahmanya Bhat, A. Chaouiki, Shubhalaxmi, and S. Jodeh, J. Mol. Liq., 2017, 244, 154-168. https://doi.org/10.1016/j.molliq.2017.08.121
  25. R. Kumar, S. Chahal, S. Kumar, S. Lata, H. Lgaz, R. Salghi, and S. Jodeh, J. Mol. Liq., 2017, 243, 439-450. https://doi.org/10.1016/j.molliq.2017.08.048
  26. D.I. Njoku, Y. Li, H. Lgaz, and E.E. Oguzie, J. Mol. Liq., 2018, 249, 371-388. https://doi.org/10.1016/j.molliq.2017.11.051
  27. M. Frisch, G. Trucks, H.B. Schlegel, G. Scuseria, M. Robb, J. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, and G. Petersson, Gaussian 09, Revision D. 01, 2009.
  28. D. Rigby, Fluid Phase Equilibria, 2004, 217(1), 77-87. https://doi.org/10.1016/j.fluid.2003.08.019
  29. K.F. Khaled, Appl. Surf. Sci., 2008, 255(5), 1811-1818. https://doi.org/10.1016/j.apsusc.2008.06.030
  30. P. Jinturkar, Y.C. Guan, and K.N. Han, CORROSION, 1998, 54(2), 106-114. https://doi.org/10.5006/1.3284833
  31. O.A. Abdullatef and R.M. Farid, Russ. J. Appl. Chem., 2017, 90(11), 1866-1875. https://doi.org/10.1134/S1070427217110222
  32. M. Ebrahimzadeh, M. Gholami, M. Momeni, A. Kosari, M.H. Moayed, and A. Davoodi, Appl. Surf. Sci., 2015, 332, 384-392. https://doi.org/10.1016/j.apsusc.2015.01.178
  33. Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, and S. Meghdadi, Corros. Sci., 2017, 114, 133-145. https://doi.org/10.1016/j.corsci.2016.11.002
  34. S.K. Saha, A. Dutta, P. Ghosh, D. Sukul, and P. Banerjee, Phys. Chem. Chem. Phys., 2015, 17(8), 5679-5690. https://doi.org/10.1039/C4CP05614K
  35. M.M. Solomon, H. Gerengi, and S.A. Umoren, ACS Appl. Mater. Interfaces, 2017, 9(7), 6376-6389. https://doi.org/10.1021/acsami.6b14153
  36. M. Mobin, R. Aslam, and J. Aslam, Mater. Chem. Phys., 2017, 191, 151-167. https://doi.org/10.1016/j.matchemphys.2017.01.037
  37. C. Verma, L.O. Olasunkanmi, E.E. Ebenso, M.A. Quraishi, and I.B. Obot, J. Phys. Chem. C, 2016, 120(21), 11598-11611. https://doi.org/10.1021/acs.jpcc.6b04429
  38. S. Zehra, M. Mobin, J. Aslam, and M. Parveen, J. Adhes. Sci. Technol., 2018, 32(3), 317-342. https://doi.org/10.1080/01694243.2017.1354669
  39. H. Ma, S. Chen, B. Yin, S. Zhao, X. Liu, Corros. Sci., 2003, 45(5), 867-882. https://doi.org/10.1016/S0010-938X(02)00175-0
  40. L.L. Liao, S. Mo, H.Q. Luo, and N.B. Li, J. Colloid Interface Sci., 2018, 520, 41-49. https://doi.org/10.1016/j.jcis.2018.02.071
  41. H. Lgaz, K. Subrahmanya Bhat, R. Salghi, Shubhalaxmi, S. Jodeh, M. Algarra, B. Hammouti, I.H. Ali, and A. Essamri, J. Mol. Liq., 2017, 238, 71-83. https://doi.org/10.1016/j.molliq.2017.04.124
  42. R. Kumar, S. Chahal, S. Kumar, S. Lata, H. Lgaz, R. Salghi, and S. Jodeh, J. Mol. Liq., 2017, 243, 439-450. https://doi.org/10.1016/j.molliq.2017.08.048