• 제목/요약/키워드: molding Analysis

검색결과 886건 처리시간 0.027초

성형조건에 따른 캐비티의 내압분포 분석 (An analysis of cavity pressure for various injection molding conditions)

  • 김동우;김수영;신광수;김도운;김기윤;류민영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.293-296
    • /
    • 2008
  • Injection molding operation consists of filling, packing, and cooling phase. The highest pressure is involved during the packing phase among the operation phases. Cavity pressure depends upon velocity to pressure switchover time and magnitude of packing pressure. The cavity pressure is directly related to stress concentration in the cavity of mold. Thus the observation and control of cavity pressure is very important to prevent mold cracking. In this study, cavity pressures were observed for operational conditions using the commercial CAE software, Moldflow. Operational conditions were velocity to pressure switchover time and packing pressure. Cavity pressures were also measured directly during injection molding. Simulation and experimental results showed good agreement.

  • PDF

파이프(Annular) 형상 제품의 사출성형 조건에 따른 수축 변형에 관한 연구 (A study on shrinkage deformation according to injection molding conditions of pipe (annular) shaped products)

  • 전대선
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.36-41
    • /
    • 2021
  • The 3 dimensional Pipe (Annular) Shaped Products was selected as a test sample, then a attribute of a molding shrinkage according to the parameters of a injection process was examined with PC, which is the typical engineering plastic. Both the inside and the outside diameter of the Pipe (Annular) sample were shrank into the inner direction of the part. And then the comparative analysis of the samples proved that a increasing thickness led a bigger shrinkage rate in the equal outside diametric samples, and a decreasing outside diameter caused a bigger shrinkage rate in the same thickness samples. The comparative study of the cushion volume of a injection machine showed that the molding shrinkage was most affected by the pressure strength among the resin temperature, the maintenance pressure strength and the maintenance pressure duration time. Each of the shrinkage rates according to the measuring direction and the gate position was different. As a result, the injection molded sample had not a typical circular shape.

고주파유도 급속 금형가열 과정의 3차원 유한요소해석 (Three-Dimensional Finite Element Analysis of the Induction Heating Procedure of an Injection Mold)

  • 손동휘;서영수;박근
    • 소성∙가공
    • /
    • 제19권3호
    • /
    • pp.152-159
    • /
    • 2010
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. High-frequency induction is an efficient way to heat mold surface by electromagnetic induction in a non-contact manner, and has been recently applied to the injection molding due to its capability of rapid heating and cooling of mold surface. The present study covers a three-dimensional finite element analysis to investigate heating efficiency and structural safety of the induction heating process of an injection mold. To simulate the induction heating process, an integrated simulation method is proposed by effectively connecting an electromagnetic field analysis, a transient heat transfer analysis and a thermal stress analysis. The estimated temperature changes are compared with experimental measurements for various types of induction coil, from which heating efficiency according to the coil shape is discussed. The resulting thermal stress distributions of the mold plate for various types of induction coils are also evaluated and discussed in terms of the structural safety.

언더컷 처리장치 없는 사출성형을 위한 강제취출에 관한 연구 (A Study on the forced ejecting for injection molding without undercut processing unit)

  • 이희철;이희진;김경호;황재영;김영식;류호연
    • Design & Manufacturing
    • /
    • 제9권1호
    • /
    • pp.1-4
    • /
    • 2015
  • Recently, the mold industry has been developed to high-quality and high-productivity with various demands of the high-tech industry. Also, geometry parts of injection mold are complex and diverse optimum design through the injection molding analysis has become a matter of course. The mold industry is trying to revitalize the industry with demand technology development and manufacturing process improvement. However, products that have undercut is the need for a separate processing mechanism and structure of the mold is getting more complex, the cost is expensive. Therefore, improving the structure of the mold through a study on the forced ejecting for injection molding without undercut processing unit and to improve the productivity.

  • PDF

초발수 곡면표면 실리콘 사출금형성형기술 (Silicone Injection Mold & Molding Technology for Super-hydrophobic Curved Surface)

  • 이성희;강정진;이종원;홍석관;고종수;이제훈;노지환
    • 한국정밀공학회지
    • /
    • 제29권1호
    • /
    • pp.13-18
    • /
    • 2012
  • In this study, silicone injection molding technology with curved thermoplastic insert was developed to produce super-hydrophobic surface. Thermoplastic insert part and injection mold design of base plastic cover were performed to produce cost effective hydrophobic surface part. An optimization process of part thickness for thermoplastic insert part was performed with transient thermal analysis under silicone over-molding process condition. Structural thermal analysis of silicone injection mold was also performed to obtain uniform temperature condition on the surface of micro-patterned mold core. Super-hydrophobic surface for the silicone injection molded part with thermoplastic insert could be verified from the measurement of contact angle. It was shown that the averaged contact angle was over $140^{\circ}$.

공리적 개념을 적용한 사출성형 시스템의 최적설계 (The Optimization of Injection Molding System Using Axiomatic Approach)

  • 김종헌;이종수;차성운
    • 대한기계학회논문집A
    • /
    • 제27권6호
    • /
    • pp.1020-1027
    • /
    • 2003
  • A traditional mold design has been conducted by an experience-based trial and error, whereby the mold designer would decide the gate locations and processing conditions based on the caring characteristics and its functional requirements. The paper suggests an optimal gate location and processing conditions in the injection molding using a global search method referred to as micro genetic algorithm( ${\mu}$ GA). ${\mu}$ GA yields the optimal solution with a small size of population without respect to design variables for saving time that is needed to calculate the fitness of many individuals. Due to the reason, the paper uses a commercial analysis package of injection molding(CAPA) to analysis a state of flux. In addition to that, axiomatic approach .is applied in the beginning of design. It is a useful method to draw a well-organized and reasonable idea to handle a problem.

전자회로 일체형 돔 형상의 플라스틱 부품 성형에 관한 연구 (A study on the molding of dome shaped plastic parts embedded with electronic circuits)

  • 성겸손;이호상
    • Design & Manufacturing
    • /
    • 제14권1호
    • /
    • pp.15-21
    • /
    • 2020
  • Smart systems in different application areas such as automotive, medical and consumer electronics require a novel manufacturing method of electronic, optical and mechanical functions into products. Traditional methods including mechanical assembly, bonding of plastic and electronic circuit cause the problems in large size of products and complicated manufacturing processes. In this study, thermoforming and film insert molding were applied to fabricate a dome shaped plastic part embedded with electronic circuits. The deformation of patterns printed on PET film was predicted by thermoforming simulation using T-SIM, and the results were compared with those by experiment. In order to decrease spring-back after thermoforming, the Taguchi method of design of experiment was used. Through ANOVA analysis, it was found that mold temperature was the most dominant parameter for spring-back. By using flow analysis, gate design was performed to decrease injection pressure. During film insert molding, the wash-out of ink printed on film occurred for Polycarbonate. When the resin was changed to PMMA, the wash-out disappeared due to low melt temperature.

전류가열 사출금형에 의한 자동차 부품의 표면개선에 관한 연구 (A Study of Surface Improvement for Automotive Part by Injection Mold of Electronic Heating)

  • 최동혁;황현태;손동일;김대일
    • 한국표면공학회지
    • /
    • 제51권1호
    • /
    • pp.40-46
    • /
    • 2018
  • The light-weight of the research and development materials is actively carried out by overseas automobile companies and technology development continues in Korea. For the sake of fuel efficiency, the development of lightweight technology by improving the manufacturing method has been very effective. Recently, to maximize the effects of light weight, automotive interior parts have been applied by the micro-cellular injection molding using supercritical fluids and we call the Mucell manufacturing. This technique causes a problem in the quality of the surface of the products, because the shooting cells are revealed as the surface layer of the products by forming micro cells at the center of the products during injection molding. To overcome these phenomenon, we increased the temperature of injection molding using joule heating until critical value. In this study, we have predicted the problem of Mucell injection molding through the finite element analysis as changed the temperature by joule heating. From the result of finite element analysis, we have determined the optimized process and made the injection mold included electric current heating system with Mucell manufacturing analyzed the surface characteristics of the injection product according to changing mold temperature.

진공흡입주형 주조법에서 탕구방안에 따른 주형 충전 양상 (Mold Cavity Filling by Gating Design in Vacuum Molding Process)

  • 강복현;김기영;김명한;홍영명
    • 한국주조공학회지
    • /
    • 제27권1호
    • /
    • pp.42-47
    • /
    • 2007
  • Vacuum molding process(V-process) has several benefits such as a lower total production cost and a high quality casting comparing to the conventional sand molding. Influence of the gating design on the molten metal flow was investigated in this study. General criteria for the gating design of the castings and commercial codes for the flow and solidification analysis were used to attain the optimized gating design in V-process. Though mold cavity was filled smoothly under the low initial velocity of molten metal, molten metal dashed against the upper part of the mold before the completion of the mold filling with higher initial molten metal velocity and fell soon. This phenomenon may affect collapsing the mold shape, however it is thought that the possibility of burning out of the vinyl by the molten metal is not so high because vinyl is coated with refractory material.

압접 커넥터 CAE 적용 휨 변형 원인 분석에 관한 연구 (A Study on the Bend Deformation Cause Analysis of CAE Applied Wire to Board Connectors)

  • 전용준;신광호;허영무
    • Design & Manufacturing
    • /
    • 제10권1호
    • /
    • pp.19-25
    • /
    • 2016
  • Connectors are very important components that transmit electric signals to different parts. It must maintain intensity of the connector to prevent defects from impact and maintain contact to transmit electric signals. Most of the external parts of the connector, which act as the main framework, are formed by injection molding. However, bend deformation occurs for injection molded products due to the residual stress left inside the product after product molding. When the bend deformation is large, it does not come into complete contact when being assembled with other parts, which leads to connector contact intensity not being properly maintained. In result, the main role of the connector, which is to transmit electric signals, cannot be performed. In order to address this problem, this study conducted bend deformation cause analysis through bend deformation analysis to predict and prevent bend deformation of housings and wafers, which are injection molded products of pressure welded connectors that are normally applied in compact mobile and display products. Bend deformation analysis was carried out by checking the charging time, pressure distribution and temperature distribution through wire to board connector wafer and housing injection molding analysis. Based on the results of the bend deformation analysis results, the cause of the bend deformation was analyzed through deformation resulting from disproportional cooling, deformation resulting from disproportional contraction, and deformation resulting from ingredient orientation. In result, it was judged that the effects for bend deformation were biggest due to disproportional contraction for both the pressure welded connector wafer and housing.