• Title/Summary/Keyword: mold material

Search Result 842, Processing Time 0.028 seconds

Developed Compact Injection Molding Machine for Desktop (탁상용 소형 사출 성형기 개발)

  • Lee, Byung-Ho;Shin, Dong-Hwa
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.21 no.5
    • /
    • pp.257-263
    • /
    • 2018
  • It is a small injection molding machine for table top considering the material heating mechanism and the design and structure stability by securing the mechanism that compresses the inside of the material heating tube by using the electric actuator and by providing space between the body and the material heating tube to reduce heat loss Develop body. An electric actuator suitable for applying pressure to the inside of a material heating tube is a mechanical system composed of a rigid structure. Since a large force is repeatedly applied to the electric actuator and the push rod, the interaction between the moving parts and the dynamic Maximum stress through analysis and prediction of fatigue life of critical parts The pushrod reflects the structural analysis results of the electric actuator and the push rod, and pushes the inside of the material heating tube by the push rod to inject the molten material from the nozzle into the mold. The pushrod operates by the operation of the electric actuator. The material heated by the coil heater is ejected through the nozzle by the pressure of the material heating tube, and the material heating tube and the nozzle are also lowered at the same time as the push rod is lowered, so that the material is closely adhered to the mold. We want to study the completion of the injection.

Properties of Plaster Mold for Open Cell Aluminum Foam (발포금속 제조를 위한 석고주형의 특성)

  • Kim, Ki-Young;Paik, Nam-Ik
    • Journal of Korea Foundry Society
    • /
    • v.21 no.4
    • /
    • pp.253-259
    • /
    • 2001
  • There are many methods to produce metal foams, which can be classified into three groups according to the state of the starting metal i.e. liquid or powder or solid. Three types of defects such as cell closing, cell deformation or breakdown and cell misrun are thought to be occurred when we make the open cell aluminum foams by precision casting. Filling ability of the mold slurry between preform is related with cell closing, mold collapsibility is related with cell deformation or breakdown, mold temperature and pouring pressure are related with cell misrun. These factors can be evaluated by measuring slurry fluidity, burnout strength and permeability of the mold. Properties of the plaster mold were evaluated to find optimum mold conditions for high quality open cell aluminum foam in this study. Permeability was almost zero independent of burnout conditions, however, crack initiation was found on the surface of all specimens one or two minutes after taking out from the furnace. Crack has grown and disappeared with time. This crack may facilitate the mold filling when molten metal is poured, because of the improved mold permeability. It was considered that crack initiation and disappearance was closely related with temperature difference between the surface and inner part. Knocking-out the mold is a difficult problem due to the small cell size, because continuous mesh structure of the metal foam is not strong. It is not easy to remove molding material after pouring. We can expect that water quenching can facilitate the knocking-out the mold after solidification without damaging cell structures. Collapsed particles after water quenching became bigger with the increase in time.

  • PDF

Development of A Software Tool for Supporting Metal Mold Design Based on The Pro/E CAD System (프로엔지니어(Pro/E) 기반 금형설계 지원 소프트웨어 툴 개발)

  • You, Ho-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.3
    • /
    • pp.1014-1020
    • /
    • 2012
  • This paper focuses on the development of a supporting S/W tool that can minimize designer's manual operations and errors in metal mold design based on a 3D solid model. The scope in this work includes the offset surface modeling, the computation of the padding force, the generation of material table, the decision of hole position, the estimation of the size of raw material, which are the essential parts of press die and mold design in automotive industry. The proposed system has been developed as a plug-in type using Pro/E API and Visual C++ in order to put the system into the menu functions of Pro/E which is one major 3D CAD systems in the manufacturing industry.

The Electric Field Analysis of 2[MVA] Mold Transformer Considering the Void Effect in the Insulating Material (2[MVA] 몰드변압기 절연물내 기포 영향을 고려한 전계해석)

  • Kim, Chang-Eob;Jeon, Mun-Ho;Lee, Suk-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.4
    • /
    • pp.177-184
    • /
    • 2010
  • This paper presents the electric field analysis for 2[MVA] mold transformer using finite element method. The electric field was calculated for the voltage applied to the mold transformer without voids in the insulating material. Then, it was analysed the maximum electric field when the voids was in the insulating materials. And the starting voltage of partial discharge was predicted due to the voids. The effects of voids in epoxy resin on the electric field were investigated for different sizes, shapes, positions and arrangements of voids.

Three-Dimensional Flow Analysis for Compression Molding of Unidirectional Fiber-Reinforced Polymeric Composites with Slip Between Mold and Material (섬유강화 플라스틱 복합재의 압축성형에 있어서 이방성과 금형-재료계면의 미끄럼을 고려한 3차원 유한요소해석)

  • Yoon, Doo-Hyun;Jo, Seon-Hyung;Kim, E-Gon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.7 s.166
    • /
    • pp.1075-1084
    • /
    • 1999
  • The family of unidirectional continuous fiber reinforced polymeric composites are currently used in automotive bumper beams and load floors. The material properties and mechanical characteristics of the compression molded parts are determined by the curing behavior, fiber orientation and formation of knit lines, which are in turn determined by the mold filling parameters. In this paper, a new model is presented which can be used to predict the 3-dimensional flow under consideration of the slip of mold-composites and anisotropic viscosity of composites during compression molding of unidirectional fiber reinforced thermoplastics for isothermal state. The composites is treated as an incompressible Newtonian fluid. The effects of longitudinal/transverse viscosity ratio A and slip parameter $\alpha$ on the buldging phenomenon and mold filling patterns are also discussed.

Characteristics of Micro Groove grinding for the Mold of PDP Barrier Ribs (PDP 격벽용 금형의 마이크로 홈 연삭 특성)

  • 조인호;정상철;박준민;정해도
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.05a
    • /
    • pp.963-966
    • /
    • 2000
  • Plasma display panel (PDP) is a type of flat panel display utilizing the light emission that is produced by gas discharge. Barrier Ribs of PDP separating each sub-pixel prevents optical and electrical crosstalk from adjacent sub-pixels. Mold for forming barrier ribs has been newly researched to overcome the disadvantages of conventional manufacturing process such as screen printing, sand-blasting and photosensitive glass methods. Mold for PDP barrier ribs have stripes of micro grooves transferring stripes of glass-material wall. In this paper. Stripes of grooves of which width 48 um, depth 124um, pitch 274um was acquired by machining the material of WC with dicing saw blade. Maximum roughness of the bottom and sidewall of the grooves was respectively 120 nm, 287 nm. Maximum tilt angle caused by difference between upper-most width and lower-most width was 2$^{\circ}$. Maximum Radius of curvature of bottom was 7.75 ${\mu}{\textrm}{m}$. This results meets the specification for barrier ribs of 50 inch XGA PDP. Forming the glass paste will be followed by using mold in the near future.

  • PDF

Effect of Mold Materials on the Microstructure and Tensile Properties of Al-Si based Lost Foam Casting Alloy (Al-Si계 소실모형주조합금의 미세조직 및 인장성질에 미치는 주형재료의 영향)

  • Kim, Jeong-Min;Lee, Gang-Rae;Choe, Kyeong-Hwan
    • Journal of Korea Foundry Society
    • /
    • v.39 no.5
    • /
    • pp.87-93
    • /
    • 2019
  • The effects of mold materials on the microstructure and tensile properties were investigated to develop a mass production technique of aluminum alloy parts with excellent mechanical properties using a lost foam casting method. The microstructures of the plate-shaped cast alloy showed a tendency to be finer in proportion to the thickness of the plate, and a remarkably fine structure was obtained by applying a steel chill or a ball as a mold material compared to general sand. When a steel ball was used, it was observed that the larger the ball, the finer the cast structure and the better the tensile properties. The microstructure and tensile properties of the cast parts with complex shapes were greatly affected by the gating system, but the positive effects of the steel chill and the steel ball as a mold material were clear.

DLC Coating Effect of WC Core Surface Roughness for Glass Molding Lens (Glass Lens 성형용 WC Core 표면조도의 DLC 코팅 효과)

  • Kim, Hyun-Uk;Jeong, Sang-Wha;Lee, Dong-Gill;Kim, Sang-Suk;Kim, Jeong-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.487-488
    • /
    • 2006
  • As DLC coating possesses such features as, high hardness, high elasticity, abrasion resistance and chemical stability, there have been exerted continuous efforts in research works in a variety of fields, and this technology has also been applied widely to industrial areas. In this research work, the optimal grinding condition was identified using Microlens Process Machine in order to contribute to the development of aspheric glass which is to be used for mobile phone module having 2 megapixel and $2.5{\times}$ zoom, and mold core (WC) was manufactured having performed ultra-precision machining and effects of DLC coating on shape accuracy(P-V) of mold core and surface roughness(Ra) as well were measured and evaluated.

  • PDF

A Study of the Silicon Mold Surface Treatment Using CHF3 Plasma for Nano Imprint Lithography (나노임프린트 리소그래피 적용을 위한 CHF3 플라즈마를 이용한 실리콘 몰드 표면 처리 특성)

  • Kim, Young-Keun;Kim, Jae-Hyun;You, Ban-Seok;Jang, Ji-Su;Kwon, Kwang-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.10
    • /
    • pp.790-793
    • /
    • 2011
  • In this study, the surface modification for a silicon(Si) mold using $CHF_3$ inductively coupled plasma(ICP). The conditions under that plasma was treated a input ICP power 600 W, an operating gas pressure of 10 mTorr and plasma exposure time of 30 sec. The Si mold surface became hydrophobic after plasma treatment in order to $CF_x$(X= 1,2,3) polymer. However, as the de-molding process repeated, it was investigated that the contact angle of Si surface was decreased. So, we attempted to investigate the degradation mechanism of the accurate pattern transfer with increasing the count of the de-molding process using scanning electron microscope (SEM), contact angle, and x-ray photoelectron spectroscopy (XPS) analysis of Si mold surface.

Study on Heterojunction Injection Pulley Fabrication for Development of a High-Strength and Light-Weight Industrial Pulley (고강도 경량화 산업용 풀리 개발을 위한 이종접합 사출풀리 제작에 관한 연구)

  • You, Kwan-jong;Bae, Sung-ryong;Kim, Jae-yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.6
    • /
    • pp.76-81
    • /
    • 2019
  • In the mold-manufacturing field, various methods of advanced production technology are being used in the production of industrial-grade gear pulleys. Among the current methods are injection molding, hoop molding, insight molding, two-material molding, compound-mold molding, as well as engineering plastic mold. Currently, casting pulleys are inexpensive because they are produced in small quantities. However, they produce complications during the manufacturing process, are very unreasonable for mass production, and are disadvantageous in cost competitiveness. Pulleys are divided into hundreds of kinds and thousands of kinds, so the production methods vary. As these pulleys are made of a single material by a casting and welding method, they are not manufactured using injection molds consisting of different materials. In this research, pulleys, shafts, and reinforced plastic materials were incorporated using ANSYS software, and a low-cost, lightweight technology was applied for trial production with optimum design and extrusion technology.