• Title/Summary/Keyword: module${\Gamma}$-ring

Search Result 8, Processing Time 0.021 seconds

REGULARITY OF THE GENERALIZED CENTROID OF SEMI-PRIME GAMMA RINGS

  • Ali Ozturk, Mehmet ;Jun, Young-Bae
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.2
    • /
    • pp.233-242
    • /
    • 2004
  • The aim of this note is to study properties of the generalized centroid of the semi-prime gamma rings. Main results are the following theorems: (1) Let M be a semi-prime $\Gamma$-ring and Q a quotient $\Gamma$-ring of M. If W is a non-zero submodule of the right (left) M-module Q, then $W\Gamma$W $\neq 0. Furthermore Q is a semi-prime $\Gamma$-ring. (2) Let M be a semi-prime $\Gamma$-ring and $C_{{Gamma}$ the generalized centroid of M. Then $C_{\Gamma}$ is a regular $\Gamma$-ring. (3) Let M be a semi-prime $\Gamma$-ring and $C_{\gamma}$ the extended centroid of M. If $C_{\gamma}$ is a $\Gamma$-field, then the $\Gamma$-ring M is a prime $\Gamma$-ring.

ON GRAPHS ASSOCIATED WITH MODULES OVER COMMUTATIVE RINGS

  • Pirzada, Shariefuddin;Raja, Rameez
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1167-1182
    • /
    • 2016
  • Let M be an R-module, where R is a commutative ring with identity 1 and let G(V,E) be a graph. In this paper, we study the graphs associated with modules over commutative rings. We associate three simple graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ to M called full annihilating, semi-annihilating and star-annihilating graph. When M is finite over R, we investigate metric dimensions in $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$. We show that M over R is finite if and only if the metric dimension of the graph $ann_f({\Gamma}(M_R))$ is finite. We further show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if M is a prime-multiplication-like R-module. We investigate the case when M is a free R-module, where R is an integral domain and show that the graphs $ann_f({\Gamma}(M_R))$, $ann_s({\Gamma}(M_R))$ and $ann_t({\Gamma}(M_R))$ are empty if and only if $$M{\sim_=}R$$. Finally, we characterize all the non-simple weakly virtually divisible modules M for which Ann(M) is a prime ideal and Soc(M) = 0.

ON SOME TWISTED COHOMOLOGY OF THE RING OF INTEGERS

  • Lee, Seok-Min
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.77-102
    • /
    • 2017
  • As an analogy of $Poincar{\acute{e}}$ series in the space of modular forms, T. Ono associated a module $M_c/P_c$ for ${\gamma}=[c]{\in}H^1(G,R^{\times})$ where finite group G is acting on a ring R. $M_c/P_c$ is regarded as the 0-dimensional twisted Tate cohomology ${\hat{H}}^0(G,R^+)_{\gamma}$. In the case that G is the Galois group of a Galois extension K of a number field k and R is the ring of integers of K, the vanishing properties of $M_c/P_c$ are related to the ramification of K/k. We generalize this to arbitrary n-dimensional twisted cohomology of the ring of integers and obtain the extended version of theorems. Moreover, some explicit examples on quadratic and biquadratic number fields are given.

A GENERALIZATION OF THE ZERO-DIVISOR GRAPH FOR MODULES

  • Safaeeyan, Saeed;Baziar, Mohammad;Momtahan, Ehsan
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.1
    • /
    • pp.87-98
    • /
    • 2014
  • Let R be a commutative ring with identity and M an R-module. In this paper, we associate a graph to M, say ${\Gamma}(M)$, such that when M = R, ${\Gamma}(M)$ is exactly the classic zero-divisor graph. Many well-known results by D. F. Anderson and P. S. Livingston, in [5], and by D. F. Anderson and S. B. Mulay, in [6], have been generalized for ${\Gamma}(M)$ in the present article. We show that ${\Gamma}(M)$ is connected with $diam({\Gamma}(M)){\leq}3$. We also show that for a reduced module M with $Z(M)^*{\neq}M{\backslash}\{0\}$, $gr({\Gamma}(M))={\infty}$ if and only if ${\Gamma}(M)$ is a star graph. Furthermore, we show that for a finitely generated semisimple R-module M such that its homogeneous components are simple, $x,y{\in}M{\backslash}\{0\}$ are adjacent if and only if $xR{\cap}yR=(0)$. Among other things, it is also observed that ${\Gamma}(M)={\emptyset}$ if and only if M is uniform, ann(M) is a radical ideal, and $Z(M)^*{\neq}M{\backslash}\{0\}$, if and only if ann(M) is prime and $Z(M)^*{\neq}M{\backslash}\{0\}$.

NATURAL FILTRATIONS OF SOME PLETHYSMS

  • Kim, Young-Hie;Ko, Hyoung J.;Lee, Kyung-Ae
    • Bulletin of the Korean Mathematical Society
    • /
    • v.37 no.1
    • /
    • pp.191-207
    • /
    • 2000
  • Let R be a ommutative ring with unity and F a finite free R-module. For a nonnegative integer r, there exists a natural filtration of$S_r(S_2F)$ such that its associated graded module is isomorphic to $\Sigma_{{\lambda}{\epsilon}{\tau}_r}\;L_{\lambda}F$, where ${\Gamma}_{\gamma}$ set of partitions such that $$\mid${\lambda}$\mid$-2r,{{\widetilde}{\lambda}}-{{\widetilde}{\lambda}}_1},...,{{\widetilde}{\lambda}}_k},\;each\;{{\widetilde}{\lambda}}_t}$,is even. We call such filtrations plethysm formulas. We extend the above plethysm formula to the version of chain complexes. By plethysm formula we mean the composition of universally free functors. $Let{\emptyset}:G->F$ be a morphism of finite free R-modules. We construct the natural decomposition of $S_{r}(S_2{\emptyset})$,up to filtrations, whose associated graded complex is isomorphic to ${\Sigma}_{{\lambda}{\varepsilon}{\tau}}_r}\;L_{\lambda}{\emptyset}$.

  • PDF

THE TOTAL TORSION ELEMENT GRAPH WITHOUT THE ZERO ELEMENT OF MODULES OVER COMMUTATIVE RINGS

  • Saraei, Fatemeh Esmaeili Khalil
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.4
    • /
    • pp.721-734
    • /
    • 2014
  • Let M be a module over a commutative ring R, and let T(M) be its set of torsion elements. The total torsion element graph of M over R is the graph $T({\Gamma}(M))$ with vertices all elements of M, and two distinct vertices m and n are adjacent if and only if $m+n{\in}T(M)$. In this paper, we study the basic properties and possible structures of two (induced) subgraphs $Tor_0({\Gamma}(M))$ and $T_0({\Gamma}(M))$ of $T({\Gamma}(M))$, with vertices $T(M){\backslash}\{0\}$ and $M{\backslash}\{0\}$, respectively. The main purpose of this paper is to extend the definitions and some results given in [6] to a more general total torsion element graph case.

EXTENDED ZERO-DIVISOR GRAPHS OF IDEALIZATIONS

  • Bennis, Driss;Mikram, Jilali;Taraza, Fouad
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.1
    • /
    • pp.7-17
    • /
    • 2017
  • Let R be a commutative ring with zero-divisors Z(R). The extended zero-divisor graph of R, denoted by $\bar{\Gamma}(R)$, is the (simple) graph with vertices $Z(R)^*=Z(R){\backslash}\{0\}$, the set of nonzero zero-divisors of R, where two distinct nonzero zero-divisors x and y are adjacent whenever there exist two non-negative integers n and m such that $x^ny^m=0$ with $x^n{\neq}0$ and $y^m{\neq}0$. In this paper, we consider the extended zero-divisor graphs of idealizations $R{\ltimes}M$ (where M is an R-module). At first, we distinguish when $\bar{\Gamma}(R{\ltimes}M)$ and the classical zero-divisor graph ${\Gamma}(R{\ltimes}M)$ coincide. Various examples in this context are given. Among other things, the diameter and the girth of $\bar{\Gamma}(R{\ltimes}M)$ are also studied.