# ON SOME TWISTED COHOMOLOGY OF THE RING OF INTEGERS 

SEOK-Min LEE*


#### Abstract

As an analogy of Poincaré series in the space of modular forms, T. Ono associated a module $M_{c} / P_{c}$ for $\gamma=[c] \in$ $H^{1}\left(G, R^{\times}\right)$where finite group $G$ is acting on a ring $R . M_{c} / P_{c}$ is regarded as the 0 -dimensional twisted Tate cohomology $\widehat{H}^{0}\left(G, R^{+}\right)_{\gamma}$. In the case that $G$ is the Galois group of a Galois extension $K$ of a number field $k$ and $R$ is the ring of integers of $K$, the vanishing properties of $M_{c} / P_{c}$ are related to the ramification of $K / k$. We generalize this to arbitrary $n$-dimensional twisted cohomology of the ring of integers and obtain the extended version of theorems. Moreover, some explicit examples on quadratic and biquadratic number fields are given.


## 1. Introduction

T. Ono developed an algebraic analogy of the space of modular forms and the subspace of Poincaré series in the cohomological point of view, as a form of quotient module. Let $G$ be a finite group acting on a ring $R$ with the unit 1 and denote the action by $(s, a) \mapsto{ }^{s} a, a \in R, s \in G$. Since the group $G$ acts on the unit group $R^{\times}$of $R$, we can consider the 1-cocycle set

$$
Z^{1}\left(G, R^{\times}\right)=\left\{c: G \rightarrow R^{\times} ; c_{s t}=c_{s}^{s} c_{t}, s, t \in G\right\}
$$

where $c_{s}=c(s)$ for a cocycle $c$ and $s \in G$. Two cocycles $c, c^{\prime}$ are equivalent (cohomologous), denoted by $c \sim c^{\prime}$, if there is a unit element $u \in R^{\times}$such that $c_{s}^{\prime}=u^{-1} c_{s}{ }^{s} u, s \in G$. The cohomology set is defined by

$$
H^{1}\left(G, R^{\times}\right)=Z^{1}\left(G, R^{\times}\right) / \sim
$$

Received December 03, 2016; Accepted January 09, 2017.
2010 Mathematics Subject Classification: 11R16, 11R34, 11S15.
Key words and phrases: twisted cohomology, twisted module, Poincaré sum, biquadratic field.

This work was supported by 2014 Hongik University Research Fund.

For a 1-cocycle $c \in Z^{1}\left(G, R^{\times}\right)$, T. Ono defined the modules $M_{c}$ and $P_{c}$, named after modular form and Poincaré series, given by

$$
\begin{aligned}
& M_{c}=\left\{a \in R ; c_{s}{ }^{s} a=a, s \in G\right\}, \text { and } \\
& P_{c}=\left\{p_{c}(a)=\sum_{t \in G} c_{t}{ }^{t} a ; a \in R\right\},
\end{aligned}
$$

where $p_{c}(a)$ is called the Poincaré sum $[4,5,6]$. The module structure of $M_{c} / P_{c}$ depends only on the cohomology class $\gamma=[c] \in H^{1}\left(G, R^{\times}\right)$ containing $c$. In particular, if $c \sim 1$, the module $M_{c} / P_{c}$ is equal to the $0-$ dimensional Tate cohomology $\widehat{H}^{0}(G, R)$. For a general cocycle $c, M_{c} / P_{c}$ can be considered as the twisted 0-Tate cohomology $\widehat{H}^{0}(G, R)_{\gamma}$ with the new action $a \mapsto c_{s}{ }^{s} a$. The case that $G$ is the Galois group of a Galois extension $K / k$ of number fields and $R$ is the ring of integers $\mathcal{O}_{K}$ of $K$ was studied in $[4,5,6,7]$. T. Ono proved in [7] the following theorems;

Theorem 1.1. Let $K / k$ be a finite Galois extension of number fields. If $K / k$ is unramified or tamely ramified, then $M_{c}=P_{c}$ for all cocycle $c \in Z^{1}\left(\operatorname{Gal}(K / k), \mathcal{O}_{K}{ }^{\times}\right)$.

Theorem 1.2. Let $K / k$ be a finite Galois extension of number fields and $G=\operatorname{Gal}(K / k)$. For a cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}{ }^{\times}\right)$denote by $c_{\mathfrak{F}}$ the cocycle induced from $c$ by localization at $\mathfrak{P}$. Then we have the product relation $\left(M_{c}: P_{c}\right)=\prod_{\mathfrak{p}}\left(M_{c_{\mathfrak{F}}}: P_{\mathfrak{C}_{\mathfrak{F}}}\right)$ where for each $\mathfrak{p}$ we choose one $\mathfrak{P}$ dividing $\mathfrak{p}$.

In this work, these theorems are generalized as follows: First, we define $n$-dimensional twisted cohomology $H^{n}\left(G, \mathcal{O}_{K}\right)_{c}$ in section 2, then we show that if $K / k$ is tamely ramified then the twisted $n$-cohomology vanishes for any integer $n$ and for any cocycle $c$ (Theorem 3.1), and that

$$
H^{n}\left(G, \mathcal{O}_{K}\right)_{c} \cong \prod_{\mathfrak{p}} H^{n}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{F}}}\right)_{c_{\mathfrak{F}}},
$$

where for each $\mathfrak{p}$ we choose one $\mathfrak{P}$ dividing $\mathfrak{p}$ (Theorem 5.1).
On the other hand, Yokoi [9, 10, 11] and Lee and Madan [3] studied $n$ dimensional Galois cohomology of the ring of integers. We may consider this paper as a generalization of their works [3] and $[9,10,11]$ into the twisted cohomology as well.

Moreover, in Theorem 3.2 it is shown that for the cyclic Galois extension, we have $\left|H^{n}\left(G, \mathcal{O}_{K}\right)_{c}\right|=\left|M_{c} / P_{c}\right|$ for all positive integer $n$ and for all 1-cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$. This does not hold for a non-cyclic extension, e.g. biquadratic fields (Section 7).

## 2. $n$-dimensional twisted cohomology

For a 1-cocycle $c \in Z^{1}\left(G, R^{\times}\right)$, we define the twisted action $(s, a) \mapsto$ $c_{s}{ }^{s} a$ of $G$ on the additive group $R$. We can consider $R$ as the $G$-module defined by the twisted action and let us call it a $c$-twisted $G$-module. If $A$ is a $G$-module derived from the additive group $R$ which admits the twisted action by $c$, then also we can consider $A$ as a $c$-twisted $G$-module.

For a $c$-twisted $G$-module $A$, we have $n$-dimensional twisted cohomology group $H^{n}(G, R)_{c}$ for each nonnegative integer $n$ as follows: Let $C^{n}(G, A)_{c}$, the set of $n$-chains, be the set of all maps of $G^{n}$ to $A$ for $n>0$ and let $C^{0}(G, A)_{c}=\left\{1_{G}\right\}$. The coboundary map $d_{n+1}: C^{n}(G, A)_{c} \rightarrow$ $C^{n+1}(G, A)_{c}$ is defined by

$$
\begin{aligned}
\left(d_{n+1} f\right)\left(s_{1}, \ldots, s_{n+1}\right)= & c_{s_{1}}{ }^{s_{1}} f\left(s_{2}, \ldots, s_{n+1}\right) \\
& +\sum_{i=1}^{n}(-1)^{i} f\left(s_{1}, \ldots, s_{i} s_{i+1}, \ldots, s_{n+1}\right) \\
& +(-1)^{n+1} f\left(s_{1}, \ldots, s_{n}\right)
\end{aligned}
$$

then $\operatorname{im} d_{n} \subset \operatorname{ker} d_{n+1}$. Denote by $H^{n}(G, R)_{c}=Z^{n}(G, R)_{c} / B^{n}(G, R)_{c}$ where $Z^{n}(G, R)_{c}=\operatorname{ker} d_{n+1}$ is the the twisted $n$-cocycle and $B^{n}(G, R)_{c}=$ $\operatorname{im} d_{n}$ is the twisted $n$-coboundary. Here we have $H^{0}(G, R)_{c}=M_{c}$ and $\widehat{H}^{0}(G, R)_{c}=M_{c} / P_{c}$. The twisted 1-cocycle in $A$ is the function $d: G \rightarrow A$ such that

$$
d_{s t}=d_{s}+c_{s}^{s} d_{t}
$$

and the twisted 1-coboundary is $d_{s}=c_{s}{ }^{s} b-b$ for some $b \in A$.
A homomorphism between $c$-twisted $G$-modules is well defined, and induces a group homomorphism between cohomologies. As usual, if

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

is an exact sequence of $c$-twisted $G$-modules, then we have the long exact sequence of twisted cohomology groups:

$$
\begin{aligned}
0 & \rightarrow H^{0}(G, A)_{c} \rightarrow H^{0}(G, B)_{c} \rightarrow H^{0}(G, C)_{c} \rightarrow H^{1}(G, A)_{c} \\
& \rightarrow H^{1}(G, B)_{c} \rightarrow H^{1}(G, C)_{c} \rightarrow H^{2}(G, A)_{c} \rightarrow H^{2}(G, B)_{c} \\
& \rightarrow H^{2}(G, C)_{c} \rightarrow \cdots
\end{aligned}
$$

Now assume that the group $G$ is cyclic with the generator $s$ of order $n$. Define two endomorphisms $\Delta$ and $N$ of $c$-twisted $G$-module $A$ such
that

$$
\Delta=1-c_{s} s, \quad N=\sum_{i=0}^{n-1} c_{s^{i}} s^{i}
$$

Note that $c_{s^{i}}=c_{s}{ }^{s} c_{s}{ }^{s} c_{s} \ldots{ }^{s^{i-1}} c_{s}$. Then we have $\Delta N=N \Delta=0$ and this means $\operatorname{im} N \subset \operatorname{ker} \Delta$ and $\operatorname{im} \Delta \subset \operatorname{ker} N$. It turns out to be

$$
\widehat{H}^{0}(G, A)_{c}=\operatorname{ker} \Delta / \operatorname{im} N, \quad H^{1}(G, A)_{c}=\operatorname{ker} N / \operatorname{im} \Delta
$$

and Herbrand theorem holds: If

$$
0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0
$$

is an exact sequence of $c$-twisted $G$-modules, then the twisted cohomology exact sequence is an exact hexagon:


We denote by $h_{c}(A)=\left|\widehat{H}^{0}(G, A)_{c}\right| /\left|H^{1}(G, A)_{c}\right|$ the Herbrand quotient of the twisted cohomology. If two of three Herbrand quotients $h_{c}(A)$, $h_{c}(B), h_{c}(C)$ are defined, so is the third and we have

$$
h_{c}(B)=h_{c}(A) h_{c}(B)
$$

Now we will verify that for $n \geq 1$, the structure of the twisted cohomology $H^{n}(G, R)_{c}$ twisted by $c$ depends only on the cohomology class $\gamma=[c] \in H^{1}\left(G, R^{\times}\right)$. Let $c \sim c^{\prime}$, i.e. for some $u \in R^{\times}$,

$$
c_{s}^{\prime}=u^{-1} c_{s}^{s} u \quad \text { for all } s \in G .
$$

Then
$f \in Z^{n}(G, R)_{c^{\prime}} \Leftrightarrow f: G^{n} \rightarrow R$ such that, for $s_{1}, \ldots, s_{n+1} \in G$,

$$
\begin{aligned}
& c_{s_{1}}^{\prime} s_{1} f\left(s_{2}, \ldots, s_{n+1}\right) \\
= & \sum_{i=1}^{n}(-1)^{i+1} f\left(s_{1}, \ldots, s_{i} s_{i+1}, \ldots, s_{n+1}\right) \\
+ & (-1)^{n} f\left(s_{1}, \ldots, s_{n}\right) \\
\Leftrightarrow & c_{s_{1}} s_{1}\left(u f\left(s_{2}, \ldots, s_{n+1}\right)\right) \\
= & \sum_{i=1}^{n}(-1)^{i+1} u f\left(s_{1}, \ldots, s_{i} s_{i+1}, \ldots, s_{n+1}\right) \\
+ & (-1)^{n} u f\left(s_{1}, \ldots, s_{n}\right) \\
\Leftrightarrow & u f \in Z^{n}(G, R)_{c} .
\end{aligned}
$$

And

$$
g \in B^{n}(G, R)_{c^{\prime}} \Leftrightarrow g: G^{n} \rightarrow R \text { such that there exists } f: G^{n-1} \rightarrow R
$$

$$
\begin{aligned}
g\left(s_{1}, \ldots, s_{n}\right)= & c_{s_{1}}^{\prime} s_{1} f\left(s_{2}, \ldots, s_{n}\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} f\left(s_{1}, \ldots, s_{i} s_{i+1}, \ldots, s_{n}\right) \\
& +(-1)^{n+1} f\left(s_{1}, \ldots, s_{n-1}\right) \\
\Leftrightarrow u g\left(s_{1}, \ldots, s_{n}\right)= & c_{s_{1}}^{s_{1}}\left(u f\left(s_{2}, \ldots, s_{n}\right)\right) \\
& +\sum_{i=1}^{n-1}(-1)^{i} u f\left(s_{1}, \ldots, s_{i} s_{i+1}, \ldots, s_{n}\right) \\
& +(-1)^{n+1} u f\left(s_{1}, \ldots, s_{n-1}\right) \\
\Leftrightarrow & u g \in B^{n}(G, R)_{c} .
\end{aligned}
$$

Hence we have

$$
\begin{aligned}
H^{n}(G, R)_{c} & =Z^{n}(G, R)_{c} / B^{n}(G, R)_{c} \\
& =u Z^{n}(G, R)_{c^{\prime}} / u B^{n}(G, R)_{c^{\prime}} \cong H^{n}(G, R)_{c^{\prime}}
\end{aligned}
$$

We state this result in the following proposition.
Proposition 2.1. If $c$ and $c^{\prime}$ are cohomologous in $Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$, then we have

$$
H^{n}(G, R)_{c} \cong H^{n}(G, R)_{c^{\prime}}
$$

## 3. Galois extension of number fields

Let $K / k$ be a finite Galois extension of number fields. Through this paper, we will take the group $G$ as the Galois group $\operatorname{Gal}(K / k)$ of the extension and the ring $R$ as the ring of integers $\mathcal{O}_{K}$ of $K$. However, firstly we consider the case $R=K$. By Hilbert's Theorem 90, any cocycle $c \in Z^{1}\left(G, K^{\times}\right)$is a coboundary, that implies, $H^{n}(G, K)_{c} \cong H^{n}(G, K)$, which vanishes for all dimension $n$. Now we take $R=\mathcal{O}_{K}$. A cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$can be regarded as a cocycle into $K^{\times}$, then $\mathcal{O}_{K}$ can be dealt as a twisted submodule of $K$.

We have the generalization of Theorem 1.1 on $n$-dimensional twisted cohomology.

Theorem 3.1. If the finite Galois extension $K / k$ of number fields is tamely ramified, then $H^{n}\left(G, \mathcal{O}_{K}\right)_{c}$ vanishes for all dimension $n \geq 1$ and for all cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}{ }^{\times}\right)$.

Proof. Let $F$ be an intermediate field of $K / k$ and $\Gamma$ be the Galois group of $K$ over $F$. Since $\Gamma$ is a subgroup of $G$, any $c$-twisted $G$-module is $c$-twisted $\Gamma$-module, and twisted cohomology of $\Gamma$ makes sense. We will verify that for any intermediate field $F$ of $K / k$ with the Galois group $\Gamma=\operatorname{Gal}(K / F)$, the 0 - and 1-dimensional twisted Tate cohomology groups vanish. Then the result follows.
(1) For $c \in Z^{1}\left(G, \mathcal{O}_{K}{ }^{\times}\right)$, let $c^{\prime}$ be the restriction of $c$ on $\Gamma$ then $c^{\prime} \in$ $Z^{1}\left(\Gamma, \mathcal{O}_{K}{ }^{\times}\right)$. Note that $\widehat{H}^{0}\left(\Gamma, \mathcal{O}_{K}\right)_{c}=\widehat{H}^{0}\left(\Gamma, \mathcal{O}_{K}\right)_{c^{\prime}}$. Since $K / k$ is tamely ramified, $K / F$ is also tamely ramified. By Theorem 1.1 and the above assertion, we have $\widehat{H}^{0}\left(\Gamma, \mathcal{O}_{K}\right)_{c}=0$.
(2) Since $K / F$ is tamely ramified, the trace map $\operatorname{Tr}_{K / F}: \mathcal{O}_{K} \rightarrow \mathcal{O}_{F}$ is surjective so there exists an element $\alpha \in \mathcal{O}_{K}$ such that $\operatorname{Tr}_{K / F}(\alpha)=$ 1. Let $c \in Z^{1}\left(G, \mathcal{O}_{K}{ }^{\times}\right)$be a 1-cocycle. For any twisted 1-cocycle $d \in Z^{1}\left(\Gamma, \mathcal{O}_{K}\right)_{c}$, define $\beta=\sum_{t \in \Gamma} d_{t}{ }^{t} \alpha \in \mathcal{O}_{K}$ the Poincaré sum for the twisted cocycle $d$ then we have

$$
\begin{align*}
\beta-c_{s}{ }^{s} \beta & =\sum_{t \in \Gamma} d_{t}{ }^{t} \alpha-\sum_{t \in \Gamma} c_{s}{ }^{s} d_{t}{ }^{s t} \alpha \\
& =\sum_{t \in \Gamma} d_{t}{ }^{t} \alpha-\sum_{t \in \Gamma}\left(d_{s t}-d_{s}\right)^{s t} \alpha  \tag{3.1}\\
& =\sum_{t \in \Gamma} d_{t}{ }^{t} \alpha-\sum_{t \in \Gamma} d_{s t}{ }^{s t} \alpha+d_{s} \sum_{t \in \Gamma}{ }^{s t} \alpha \\
& =d_{s} \cdot \operatorname{Tr}_{K / F}(\alpha)=d_{s} .
\end{align*}
$$

This implies that any twisted 1-cocycle is a twisted 1-coboundary.

Theorem 3.2. Let $K / k$ be a finite cyclic Galois extension of number fields with the Galois group $G=\operatorname{Gal}(K / k)$, and let $c \in Z^{1}\left(G, \mathcal{O}_{K}{ }^{\times}\right)$be a 1-cocycle of $G$ in the unit group of $\mathcal{O}_{K}$. Then the twisted cohomology group $H^{n}\left(G, \mathcal{O}_{K}\right)_{c}$ has the same order with $\widehat{H}^{0}\left(G, \mathcal{O}_{K}\right)_{c}=M_{c} / P_{c}$ for every dimension $n \geq 1$.

Proof. Let $s$ be the generator of the group $G$ of order $m$. We see $M_{c}$ as a twisted $G$-module. Since $M_{c}$ makes an ideal of $\mathcal{O}_{k}$ by multiplied by a proper element of $\mathcal{O}_{K}$ as in [7], the rank of $M_{c}$ is same as $\mathcal{O}_{k}$. On the other hand, let $\beta \in \mathcal{O}_{K}$ be the element generating the normal basis for $K / k$. Then $\left\{c_{s^{1}} s^{1} \beta, c_{s^{2}} s^{2} \beta, \ldots, c_{s^{m}} s^{m} \beta\right\}$ is also a basis of $K / k$ since the basis change matrix is diagonal with entries $c_{s^{i}}$, the unit elements. Define

$$
M=M_{c} c_{s^{1}} s^{1} \beta+M_{c} c_{s^{2}} s^{2} \beta+\cdots+M_{c} c_{s^{m}} s^{m} \beta
$$

then we have that the index $\left[\mathcal{O}_{K}: M\right]$ is finite and that $M$ is $G$-regular as a twisted $G$-module since each $M_{c} c_{s^{i}} s^{i} \beta$ forms a direct summand of $M$. Let $N=\mathcal{O}_{K} / M$ then $N$ is a finite twisted $G$-module. We have an exact sequence of twisted modules:

$$
0 \rightarrow M \rightarrow \mathcal{O}_{K} \rightarrow N \rightarrow 0
$$

Since $G$ is cyclic, we have $H^{2 l}\left(G, \mathcal{O}_{K}\right)_{c}$
$\cong \widehat{H}^{0}\left(G, \mathcal{O}_{K}\right)_{c}$ and $H^{2 l-1}\left(G, \mathcal{O}_{K}\right)_{c} \cong H^{1}\left(G, \mathcal{O}_{K}\right)_{c}$ for any positive integer $l$. $H^{n}(G, M)_{c}$ vanishes for any $n$ because $M$ is a twisted $G$-regular module. Hence we have $\widehat{H}^{0}\left(G, \mathcal{O}_{K}\right)_{c} \cong \widehat{H}^{0}(G, N)_{c}$ and $H^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong$ $H^{1}(G, N)_{c}$. Also, since $N$ is a finite module, we have that the Herbrand quotient $h_{c}(N)$ of the twisted cohomology of $N$ is equal to 1 , which concludes the theorem.

## 4. 1-dimensional twisted cohomology

In this section, we study the structure of 1-dimensional twisted cohomology. We give an analogy of the group $H_{K / k}(\mathfrak{a})$ suggested in [10] into the case of twisted cohomology. Let a 1-cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}{ }^{\times}\right)$and a nonzero integer $a \in \operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)$ in $k$ be fixed. For a twisted 1-cocycle $d \in Z^{1}\left(G, \mathcal{O}_{K}\right)_{c}$, we can choose an integer $\beta$ in $\mathcal{O}_{K}$ such that

$$
\begin{equation*}
\beta-c_{s}{ }^{s} \beta=a \cdot d_{s} \quad \text { for all } s \in G . \tag{4.1}
\end{equation*}
$$

Indeed, let $\alpha$ be the element in $\mathcal{O}_{K}$ with the trace value $a$ and let $\beta=$ $\sum_{t \in G} d_{t}{ }^{t} \alpha \in \mathcal{O}_{K}$ be of form of the Poincaré sum for the twisted cocycle $d$ then we get the equation (4.1) with the similar assertion to (3.1). From the equation (4.1) we have that

$$
\begin{equation*}
\beta \equiv c_{s}{ }^{s} \beta \bmod a \mathcal{O}_{K} . \tag{4.2}
\end{equation*}
$$

Conversely, if $\beta \in \mathcal{O}_{K}$ satisfies the congruence relation (4.2) then $\beta$ defines a twisted 1-cocycle $d \in Z^{1}\left(G, \mathcal{O}_{K}\right)_{c}$. Indeed, for each $s \in G$, let $d_{s} \in \mathcal{O}_{K}$ such that $\beta-c_{s}{ }^{s} \beta=a \cdot d_{s}$ then $d_{s}$ satisfies the condition of twisted 1-cocycle $d_{s t}=d_{s}+c_{s}{ }^{s} d_{t}$. Now we obtain the following proposition.

Proposition 4.1. Denote by

$$
Z_{c}(a)=\left\{\beta \in \mathcal{O}_{K} ; \beta \equiv c_{s}{ }^{s} \beta \bmod a \mathcal{O}_{K}\right\}
$$

then we have

$$
Z^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong Z_{c}(a) / M_{c} .
$$

Proof. Define the map $\varphi: Z_{c}(a) \rightarrow Z^{1}\left(G, \mathcal{O}_{K}\right)_{c}$ as above: $\beta \mapsto d$ such that $\beta-c_{s}{ }^{s} \beta=a \cdot d_{s}$. Then $\varphi$ is surjective by the above assertion and trivially $\varphi$ is a homomorphism. One sees that $\operatorname{ker} \varphi=M_{c}$ easily.

Now, for the twisted 1-coboundary, we have
Proposition 4.2. Denote by

$$
B_{c}(a)=\left\{\beta \in \mathcal{O}_{K} ; \beta \equiv b \bmod a \mathcal{O}_{K} \text { for some } b \in M_{c}\right\}
$$

then we have

$$
B^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong B_{c}(a) / M_{c} .
$$

Proof. First note that clearly $B_{c}(A) \subset Z_{c}(a)$. The homomorphism $\varphi: Z_{c}(a) \rightarrow Z^{1}\left(G, \mathcal{O}_{K}\right)_{c}$ in the Proposition 4.1 induces an epimorphism $\varphi: B_{c}(a) \rightarrow B^{1}\left(G, \mathcal{O}_{K}\right)_{c}$ since

$$
\begin{aligned}
\beta \in B_{c}(a) & \Leftrightarrow \beta \equiv b \bmod a \mathcal{O}_{K} \text { for some } b \in M_{c} \\
& \Leftrightarrow \beta-a \gamma \in M_{c} \text { for some } \gamma \in \mathcal{O}_{K} \\
& \Leftrightarrow \beta-a \gamma=c_{s}^{s}(\beta-a \gamma) \text { for some } \gamma \in \mathcal{O}_{K} \\
& \Leftrightarrow \beta-c_{s}^{s} \beta=a\left(\gamma-c_{s}{ }^{s} \gamma\right) \text { for some } \gamma \in \mathcal{O}_{K}
\end{aligned}
$$

and $\beta \mapsto \gamma-c_{s}{ }^{s} \gamma \in B^{1}\left(G, \mathcal{O}_{K}\right)_{c}$. It is easy to see that the kernel is also $M_{c}$.

As a corollary of Proposition 4.1 and Proposition 4.2, we have

Proposition 4.3. Let $a$ be a nonzero element of $\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)$. Then the 1-dimensional twisted Galois cohomology group $H^{1}\left(G, \mathcal{O}_{K}\right)_{c}$ of $\mathcal{O}_{K}$ is isomorphic to the factor group

$$
H^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong Z_{c}(a) / B_{c}(a)
$$

Now we define for an ideal $\mathfrak{a}$ of $\mathcal{O}_{k}$,

$$
\begin{aligned}
Z_{c}(\mathfrak{a}) & :=\left\{\alpha \in \mathcal{O}_{K} ; \alpha \equiv c_{s}{ }^{s} \alpha \bmod \mathfrak{a} \mathcal{O}_{K}\right\} \\
B_{c}(\mathfrak{a}) & :=\left\{\alpha \in \mathcal{O}_{K} ; \alpha \equiv b \bmod \mathfrak{a} \mathcal{O}_{K} \text { for some } b \in M_{c}\right\}=M_{c}+\mathfrak{a} \mathcal{O}_{K}
\end{aligned}
$$

and

$$
H_{c}(\mathfrak{a}):=Z_{c}(\mathfrak{a}) / B_{c}(\mathfrak{a})
$$

If $\alpha \in Z_{c}(\mathfrak{a})$ then $p_{c}(\alpha)=\sum_{s \in G} c_{s}{ }^{s} \alpha \equiv|G| \alpha \bmod \mathfrak{a} \mathcal{O}_{K}$ so that we have $|G| Z_{c}(\mathfrak{a}) \subset B_{c}(\mathfrak{a}) \subset Z_{c}(\mathfrak{a})$. In the case of principal ideal $(a)$ of $k$, let us denote $H_{c}(a)=H_{c}((a))$ just for convenience. Proposition 4.3 shows that $H^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong H_{c}(a)$ for any trace image $a \in T_{K / k}\left(\mathcal{O}_{K}\right)$.

Proposition 4.4. Let $\mathfrak{a}$ and $\mathfrak{b}$ be mutually prime ideals of $\mathcal{O}_{k}$. Then we have

$$
H_{c}(\mathfrak{a} \mathfrak{b}) \cong H_{c}(\mathfrak{a}) \oplus H_{c}(\mathfrak{b})
$$

Proof. Let $\gamma \in Z_{c}(\mathfrak{a b})$. Since $\gamma-c_{s}{ }^{s} \gamma \in \mathfrak{a b} \mathcal{O}_{k} \subset \mathfrak{a} \mathcal{O}_{k} \cap \mathfrak{b} \mathcal{O}_{k}$, we have $\gamma \in Z_{c}(\mathfrak{a})$ and $\gamma \in Z_{c}(\mathfrak{b})$ so that the natural homomorphism

$$
Z_{c}(\mathfrak{a b}) \longrightarrow Z_{c}(\mathfrak{a}) / B_{c}(\mathfrak{a}) \oplus Z_{c}(\mathfrak{b}) / B_{c}(\mathfrak{b})
$$

is induced. The kernel of the homomorphism is $B_{c}(\mathfrak{a b})$. Indeed, let $\gamma \in Z_{c}(\mathfrak{a b})$ such that $\gamma \in B_{c}(\mathfrak{a}) \cap B_{c}(\mathfrak{b})$, say, $\gamma-a_{0}=\alpha \in \mathfrak{a} \mathcal{O}_{K}$ and $\gamma-b_{0}=\beta \in \mathfrak{b} \mathcal{O}_{K}$ for some $a_{0}, b_{0} \in M_{c}$. Since $\mathfrak{a}$ and $\mathfrak{b}$ are relatively prime, there are elements $a$ and $b$ in $\mathfrak{a}$ and $\mathfrak{b}$, respectively, such that $a+b=1$. Then $a b_{0}+b a_{0} \in M_{c}$ and

$$
\gamma-\left(a b_{0}+b a_{0}\right)=(a+b) \gamma-\left(a b_{0}+b a_{0}\right)=a \beta+b \alpha \in \mathfrak{a b} \mathcal{O}_{K}
$$

which means $\gamma \in B_{c}(\mathfrak{a b})$.
Now, it remains to show that the homomorphism is surjective: let $\alpha \in Z_{c}(\mathfrak{a})$ and $\beta \in Z_{c}(\mathfrak{b})$. Define $\gamma=a \beta+b \alpha$ where $a \in \mathfrak{a}, b \in \mathfrak{b}$ are fixed, with the property $a+b=1$. Then we have $\gamma-c_{s}{ }^{s} \gamma=a\left(\beta-c_{s}{ }^{s} \beta\right)+$ $b\left(\alpha-c_{s}{ }^{s} \alpha\right) \in \mathfrak{a b} \mathcal{O}_{K}$ so that $\gamma \in Z_{c}(\mathfrak{a b})$. Since $a \in B_{c}(\mathfrak{a})=M_{c}+\mathfrak{a} \mathcal{O}_{K}$ and $b \in B_{c}(\mathfrak{b})=M_{c}+\mathfrak{b} \mathcal{O}_{K}$, we have $\gamma=a \beta+b \alpha \equiv \alpha \bmod B_{c}(\mathfrak{a})$ and $\gamma \equiv \beta \bmod B_{c}(\mathfrak{b})$.

Proposition 4.5. For any ideal $\mathfrak{a}$ of $\mathcal{O}_{k}$, the group $H_{c}(\mathfrak{a})$ is finite. More precisely, we have

$$
\left[B_{c}(\mathfrak{a}): \mathfrak{a} \mathcal{O}_{K}\right]=N(\mathfrak{a})
$$

and the order of $H_{c}(\mathfrak{a})$ divides $N(\mathfrak{a})^{n-1}$ where $n$ is the degree of the extension $K / k$. In particular, for a prime ideal $\mathfrak{p}$ of $\mathcal{O}_{k}$, the order $\left|H_{c}\left(\mathfrak{p}^{m}\right)\right|$ is a power of a prime integer $p\left(\right.$ possibly $\left.1=p^{0}\right)$ where $\mathfrak{p} \mid p$.

Proof. For any ideal $\mathfrak{a}$ of $\mathcal{O}_{k}$, we have $\mathfrak{a} \mathcal{O}_{K} \subset B_{c}(\mathfrak{a}) \subset Z_{c}(\mathfrak{a}) \subset \mathcal{O}_{K}$ as additive groups. So we have that $\left|H_{c}(\mathfrak{a})\right|=\left[Z_{c}(\mathfrak{a}): B_{c}(\mathfrak{a})\right]$ is finite. On the other hand, it is known that there exists a nonzero integer $\xi$ in $\mathcal{O}_{K}$ such that $\xi M_{c}=\mathfrak{b}=\xi \mathcal{O}_{K} \cap \mathcal{O}_{k}$ is an ideal of $\mathcal{O}_{k}$, and $\xi \mathcal{O}_{K}$ is an ambiguous ideal of $\mathcal{O}_{K}$. Then $\xi \mathfrak{a} \mathcal{O}_{K} \cap \mathcal{O}_{k}=\mathfrak{a b}$ and we have

$$
\frac{B_{c}(\mathfrak{a})}{\mathfrak{a} \mathcal{O}_{K}} \cong \frac{\mathfrak{b}+\xi \mathfrak{a} \mathcal{O}_{K}}{\xi \mathfrak{a} \mathcal{O}_{K}} \cong \frac{\mathfrak{b}}{\mathfrak{b} \cap \xi \mathfrak{a} \mathcal{O}_{K}}=\frac{\mathfrak{b}}{\mathfrak{a b}}
$$

Hence $\left[B_{c}(\mathfrak{a}): \mathfrak{a} \mathcal{O}_{K}\right]=N(\mathfrak{a})$. We obtain that $\left|H_{c}(\mathfrak{a})\right|=\left[Z_{c}(\mathfrak{a}): B_{c}(\mathfrak{a})\right]$ is a divisor of $\left[\mathcal{O}_{K}: B_{c}(\mathfrak{a})\right]=N\left(\mathfrak{a} \mathcal{O}_{K}\right) / N(\mathfrak{a})=N(\mathfrak{a})^{n-1}$. Note that the norm of the ideal $\mathfrak{p}^{m}$ is a power of the prime integer $p \in \mathbf{Z}$ such that $\mathfrak{p} \mid p$.

Theorem 4.6. For the ideal $\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)$ of $\mathcal{O}_{k}$, we have

$$
H^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong H_{c}\left(\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)\right)
$$

Proof. We borrow the idea used in the proof of Theorem 2 in [10]. We will show that $H_{c}(\mathfrak{b})=0$ for any ideal $\mathfrak{b}$ in $\mathcal{O}_{k}$ which is relatively prime to $\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)$. Let us denote by the ideal $\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)$ as $\mathfrak{a}$. Let $\mathfrak{p}$ be a prime ideal of $\mathcal{O}_{k}$ with $(\mathfrak{a}, \mathfrak{p})=1$. We may choose an ideal $\mathfrak{b}$ in $\mathcal{O}_{k}$ such that $\left(\mathfrak{a p}{ }^{m}, \mathfrak{b}\right)=1$ and $\mathfrak{a p} \mathfrak{p}^{m} \mathfrak{b}$ is a principal ideal $(a)$ in $\mathcal{O}_{k}$. Also there exists an ideal $\mathfrak{c}$ in $\mathcal{O}_{k}$ such that $\left(\mathfrak{a p}{ }^{m} \mathfrak{b}, \mathfrak{c}\right)=1$ and $\mathfrak{a c}$ is a principal ideal $\left(a^{\prime}\right)$. By Proposition 4.3, we have

$$
H_{c}(a) \cong H_{c}\left(a^{\prime}\right) \cong H^{1}\left(G, \mathcal{O}_{K}\right)_{c}
$$

Then by Proposition 4.4, we have

$$
H_{c}(\mathfrak{a}) \oplus H_{c}\left(\mathfrak{p}^{m}\right) \oplus H_{c}(\mathfrak{b}) \cong H_{c}(\mathfrak{a}) \oplus H_{c}(\mathfrak{c}) \cong H^{1}\left(G, \mathcal{O}_{K}\right)_{c}
$$

We have $\left|H_{c}\left(\mathfrak{p}^{m}\right)\right|=p^{i}$ divides $\left|H_{c}(\mathfrak{c})\right|$ for some $i$. But since $(a, \mathfrak{c})=1$, whence $p \mid a$, we have $\left|H_{c}\left(\mathfrak{p}^{m}\right)\right|$ and $\left|H_{c}(\mathfrak{c})\right|$ are mutually prime. Therefore we obtain $H_{c}\left(\mathfrak{p}^{m}\right)=0$. This happens for arbitrary prime ideal $\mathfrak{p}$ of $\mathcal{O}_{k}$ prime to $\mathfrak{a}$ and for any positive integer $m$, hence we also get $H_{c}(\mathfrak{b})=0$ and finally we have $H^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong H_{c}(\mathfrak{a})$.

Remark 4.7. Note that $H_{c}\left(\mathcal{O}_{k}\right)=0$ since $Z_{c}\left(\mathcal{O}_{k}\right)=B_{c}\left(\mathcal{O}_{k}\right)=\mathcal{O}_{K}$. If $K / k$ is tamely ramified, we have $\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)=\mathcal{O}_{k}$ and we can also check $H^{1}\left(G, \mathcal{O}_{K}\right)_{c}=0$ by Theorem 4.6.

Corollary 4.8. We have

$$
H^{1}\left(G, \mathcal{O}_{K}\right)_{c} \cong \prod_{\mathfrak{p} \mid T r_{K / k}\left(\mathcal{O}_{K}\right)} H_{c}\left(\mathfrak{p}^{\left\lfloor\frac{t_{\mathfrak{p}}}{e_{\mathfrak{p}}}\right\rfloor}\right)
$$

where $e_{\mathfrak{p}}$ is the ramification index of $\mathfrak{p}$, and $\mathfrak{D}_{K / k}=\prod_{\mathfrak{p}}\left(\prod_{\mathfrak{F} \mid \mathfrak{p}} \mathfrak{P}\right)^{t_{\mathfrak{p}}}$ is the different of $K$ over $k$.

Proof. Let $\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)=\prod_{\mathfrak{p} \mid T r_{K / k}(\mathcal{O} K} \mathfrak{p}^{r_{\mathfrak{p}}}$. As in [7], we have $r_{\mathfrak{p}}=$ $\left\lfloor t_{\mathfrak{p}} / e_{\mathfrak{p}}\right\rfloor$ since

$$
\begin{aligned}
\mathfrak{p}^{r} \mid \operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right) & \Leftrightarrow \mathfrak{p}^{r} \mid \mathfrak{D}_{K / k} \\
& \Leftrightarrow \prod_{\mathfrak{P} \mid \mathfrak{p}} \mathfrak{P}^{e_{\mathfrak{p}} r} \mid\left(\prod_{\mathfrak{P} \mid \mathfrak{p}} \mathfrak{P}\right)^{t_{\mathfrak{p}}} \\
& \Leftrightarrow e_{\mathfrak{p}} r \leq t_{\mathfrak{p}} \\
& \Leftrightarrow r \leq\left\lfloor t_{\mathfrak{p}} / e_{\mathfrak{p}}\right\rfloor
\end{aligned}
$$

## 5. Local and global

Let $\mathfrak{p}$ be a prime ideal in $\mathcal{O}_{k}$ and $\mathfrak{P}$ be the prime ideal of $\mathcal{O}_{K}$ above $\mathfrak{p}$. We have completions $K_{\mathfrak{F}}$ and $k_{\mathfrak{p}}$ and the extension $K_{\mathfrak{P}} / k_{\mathfrak{p}}$ is Galois with the Galois group $G_{\mathfrak{F}}$ which is identified as the decomposition group at $\mathfrak{P}$ in $G$. The ring of integers $\mathcal{O}_{K}, \mathcal{O}_{k}$ are embedded in $\mathcal{O}_{K_{\mathfrak{F}}}, \mathcal{O}_{k_{\mathfrak{p}}}$, respectively. For 1-cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$, the $c$-twisted $G_{\mathfrak{P}}$-module structure of $\mathcal{O}_{K}$ extends to $\mathcal{O}_{K_{\mathfrak{F}}}$ so that we can consider the twisted cohomology $H^{n}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{F}}}\right)_{c}$ of $G_{\mathfrak{F}}$ into $\mathcal{O}_{K_{\mathfrak{F}}}$. On the other hand, as $c$ induces a 1-cocycle $c_{\mathfrak{F}} \in Z^{1}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}\right)$naturally through the embeddings

$$
G_{\mathfrak{F}} \longleftrightarrow G \xrightarrow{c} \mathcal{O}_{K}^{\times} \longleftrightarrow \mathcal{O}_{K_{\mathfrak{F}}}^{\times}
$$

so that we can regard $\mathcal{O}_{K_{\mathfrak{F}}}$ as $c_{\mathfrak{F}}$-twisted $G_{\mathfrak{P}}$-module and we can define the twisted cohomology $H^{n}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{F}}}\right)_{c_{\mathfrak{P}}}$ of $G_{\mathfrak{F}}$ into $\mathcal{O}_{K_{\mathfrak{F}}}$ twisted by $c_{\mathfrak{F}}$. Note that $c_{\mathfrak{F}}$-twisted action in $\mathcal{O}_{K_{\mathfrak{F}}}$ is exactly same as $c$-twisted action so that we have $H^{n}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{F}}}\right)_{c} \cong H^{n}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{F}}}\right)_{c_{\mathfrak{F}}}$.

Theorem 5.1. For each dimension $n$ we have

$$
H^{n}\left(G, \mathcal{O}_{K}\right)_{c} \cong \prod_{\mathfrak{p}} H^{n}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{C_{\mathfrak{P}}}
$$

where $\mathfrak{p}$ runs through the prime ideals in $\mathcal{O}_{k}$ and $\mathfrak{P}$ is one prime ideal of $\mathcal{O}_{K}$ dividing $\mathfrak{p}$.

Remark 5.2. By the same assertion as Theorem 3.1, we have $H^{n}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{c_{\mathfrak{P}}}=0$ if $K_{\mathfrak{P}} / k_{\mathfrak{p}}$ is tamely ramified. Denote by $W$ the set of all prime ideals $\mathfrak{p}$ of $\mathcal{O}_{k}$ which is wildly ramified in $\mathcal{O}_{K}$. Furthermore, since $\operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right)=\prod_{\mathfrak{p}} \mathfrak{p}^{\left\lfloor t_{\mathfrak{p}} / e_{\mathfrak{p}}\right\rfloor}$ by (4.3), we have

$$
\mathfrak{p} \mid \operatorname{Tr}_{K / k}\left(\mathcal{O}_{K}\right) \Leftrightarrow t_{\mathfrak{p}}>e_{\mathfrak{p}}-1 \Leftrightarrow \mathfrak{p} \in W .
$$

Hence the theorem states equivalently that

$$
H^{n}\left(G, \mathcal{O}_{K}\right)_{c} \cong \prod_{\mathfrak{p} \in W} H^{n}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{c_{\mathfrak{P}}} \cong \prod_{\mathfrak{p} \mid T r_{K / k}\left(\mathcal{O}_{K}\right)} H^{n}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{c_{\mathfrak{P}}}
$$

Proof. This proof is parallel to that of Theorem 1 in [3]. Let $\mathcal{O}=$ $\prod_{\mathfrak{P}} \mathcal{O}_{K_{\mathfrak{P}}}$, and for each prime ideal $\mathfrak{p}$ in $\mathcal{O}_{k}$ let $\mathcal{O}(\mathfrak{p})=\prod_{\mathfrak{P} \mid \mathfrak{p}} \mathcal{O}_{K_{\mathfrak{P}}}$. Then $O=\prod_{\mathfrak{p}} \mathcal{O}(\mathfrak{p})$, and we have that $\mathcal{O}$ and $\mathcal{O}(\mathfrak{p})$ are $c$-twisted $G$-modules. $\mathcal{O}_{K}$ is diagonally imbedded in $\mathcal{O}$ and $\mathcal{O}(\mathfrak{p})$. Since $c_{s}$ is unit in $\mathcal{O}_{K}$, we have

$$
\prod_{s \in G / G_{\mathfrak{P}}} c_{s}{ }^{s} \mathcal{O}_{K_{\mathfrak{P}}}=\prod_{s \in G / G_{\mathfrak{F}}}{ }^{s} \mathcal{O}_{K_{\mathfrak{P}}}=\mathcal{O}(\mathfrak{p})
$$

where in the product, $s$ varies over a system of representatives of the cosets in $G / G_{\mathfrak{P}}$. Therefore by Shapiro's lemma (of form of 34.1 in [1], p. 120), we have

$$
H^{n}(G, \mathcal{O}(\mathfrak{p}))_{c} \cong H^{n}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{c} .
$$

Now we claim that

$$
\begin{equation*}
H^{n}\left(G, \mathcal{O}_{K}\right)_{c} \cong H^{n}(G, \mathcal{O})_{c} \tag{5.1}
\end{equation*}
$$

which leads the theorem since

$$
H^{n}\left(G, \mathcal{O}_{K}\right)_{c} \cong \prod_{\mathfrak{p}} H^{n}(G, \mathcal{O}(\mathfrak{p}))_{c} \cong \prod_{\mathfrak{p}} H^{n}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{c_{\mathfrak{P}}}
$$

Let $\beta \in \mathcal{O}_{K}$ be chosen as a generator of normal basis of $K / k$. Define $M=\sum_{s \in G} M_{c} c_{s}{ }^{s} \beta$ then we have that $M$ is twisted $G$-regular and $\left[\mathcal{O}_{K}: M\right]$ is finite, say $l$, as in the proof of Theorem 3.2. Also we define

$$
\mathfrak{M}=\sum_{s \in G} \mathfrak{M}_{c} c_{s}^{s} \beta
$$

where

$$
\mathfrak{M}_{c}:=\left\{\alpha \in \mathcal{O} ; c_{s}{ }^{s} \alpha=\alpha \text { for all } s \in G\right\}
$$

Then $\mathfrak{M}$ and $\mathfrak{M}_{c}$ are twisted $G$-modules, and we have $\mathcal{O}_{K} \cap \mathfrak{M}=M$ trivially.

On the other hand, we have $\mathcal{O}=\mathfrak{M}+\mathcal{O}_{K}$. Indeed, since $l \mathcal{O}_{K} \subset M$ and $M \mathcal{O} \subset \mathfrak{M}$, we have $l \mathcal{O}_{K} \mathcal{O} \subset \mathfrak{M}$. Denote by $\mathfrak{A}=l \mathcal{O}_{K}$ the ideal in $\mathcal{O}_{K}$ then we have $\mathfrak{A O}+\mathcal{O}_{K} \subset \mathfrak{M}+\mathcal{O}_{K} \subset \mathcal{O}$. It is enough to show that $\mathcal{O} \subset \mathfrak{A O}+\mathcal{O}_{K}$. Now let $\alpha=\left(a_{\mathfrak{F}}\right)_{\mathfrak{P}} \in \mathcal{O}$. By the strong approximation theorem, there exists an element $b$ in $K$ such that $\nu_{\mathfrak{P}}\left(b-a_{\mathfrak{P}}\right) \geq \nu_{\mathfrak{P}}(\mathfrak{A})$ for prime ideals $\mathfrak{P} \mid \mathfrak{A}$ and $\nu_{\mathfrak{P}}(b) \geq 0$ for prime ideals $\mathfrak{P}$ not dividing $\mathfrak{A}$. Then $b \in \mathcal{O}_{K}$. Let $\gamma=b-\alpha \in \mathcal{O}$ then $\gamma \in \prod_{\mathfrak{P}} \mathfrak{P}^{\nu_{\mathfrak{P}}(\mathfrak{A})} \subset \mathfrak{A O}$. So we have $\alpha=\gamma+b \in \mathfrak{A O}+\mathcal{O}_{K}$ and hence $\mathcal{O}=\mathfrak{M}+\mathcal{O}_{K}$.

Therefore we have twisted $G$-module isomorphisms

$$
\begin{equation*}
\frac{\mathcal{O}}{\mathfrak{M}} \cong \frac{\mathfrak{M}+\mathcal{O}_{K}}{\mathfrak{M}} \cong \frac{\mathcal{O}_{K}}{\mathcal{O}_{K} \cap \mathfrak{M}} \cong \frac{\mathcal{O}_{K}}{M} \tag{5.2}
\end{equation*}
$$

Since $M$ and $\mathfrak{M}$ are twisted $G$-regular, we have $H^{n}(G, M)_{c}=0$ and $H^{n}(G, \mathfrak{M})_{c}=0$ so that $H^{n}\left(G, \mathcal{O}_{K}\right)_{c} \cong H^{n}\left(G, \mathcal{O}_{K} / M\right)_{c}$ and $H^{n}(G, \mathcal{O})_{c} \cong$ $H^{n}(G, \mathcal{O} / \mathfrak{M})_{c}$ from the exact sequences $0 \rightarrow M \rightarrow \mathcal{O}_{K} \rightarrow \mathcal{O}_{K} / M \rightarrow 0$ and $0 \rightarrow \mathfrak{M} \rightarrow \mathcal{O} \rightarrow \mathcal{O} / \mathfrak{M} \rightarrow 0$. Combined with (5.2), we have $H^{n}\left(G, \mathcal{O}_{K}\right)_{c} \cong H^{n}(G, \mathcal{O})_{c}$.

Now we consider the twisted 1-cohomology for the completion $K_{\mathfrak{P}}$ and $k_{\mathfrak{p}}$ at a prime $\mathfrak{P}$ which is wildly ramified over the extension $K / k$. Fix prime elements $\pi$ and $\Pi$ in $\mathcal{O}_{k_{\mathfrak{p}}}$ and $\mathcal{O}_{K_{\mathfrak{F}}}$, respectively, so that $\pi=\Pi^{e_{\mathfrak{p}}}$ and $\mathfrak{p}=(\pi)$ and $\mathfrak{P}=(\Pi)$ where $e_{\mathfrak{p}}$ is the ramification index of $\mathfrak{p}$. As in [6], the 1-cohomology of the unit group $H^{1}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}^{\times}\right)$is the cyclic group of order $e_{\mathfrak{p}}$, generated by the canonical cohomology class $\gamma_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}$ with a representative cocycle $c_{0 s}$ such that ${ }^{s} \Pi=\Pi c_{0 s}$. Let $c_{\mathfrak{P}}$ be the 1-cocycle of $\mathcal{O}_{K_{\mathfrak{P}}}^{\times}$induced by $c \in Z^{1}\left(G, \mathcal{O}_{K}\right)$ and $\gamma=\left[c_{\mathfrak{P}}\right] \in H^{1}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)$. We have $\gamma=\left(\gamma_{K_{\mathfrak{P}} / k_{\mathfrak{p}}}\right)^{m}$ for some $m$ such that $0 \leq m<e_{\mathfrak{p}}$. We may regard $c_{\mathfrak{F}}$ as $c_{0}^{m}$ by Proposition 2.1.

For an ideal $\mathfrak{a}$ of $\mathcal{O}_{k_{\mathfrak{p}}}$, let
$Z_{\mathfrak{C}_{\mathfrak{P}}}(\mathfrak{a})=\left\{\alpha \in \mathcal{O}_{K_{\mathfrak{P}}} ; \alpha \equiv c_{\mathfrak{P}_{s}}{ }^{s} \alpha \bmod \mathfrak{a} \mathcal{O}_{K_{\mathfrak{P}}}\right\}$
$B_{\mathcal{C P P}_{\mathfrak{P}}}(\mathfrak{a})=\left\{\alpha \in \mathcal{O}_{K_{\mathfrak{P}}} ; \alpha \equiv b \bmod \mathfrak{a} \mathcal{O}_{K_{\mathfrak{F}}}\right.$ for some $\left.b \in M_{\mathcal{C}_{\mathfrak{P}}}\right\}=M_{\mathcal{C}_{\mathfrak{P}}}+\mathfrak{a} \mathcal{O}_{K_{\mathfrak{P}}}$
and $H_{C_{\mathfrak{P}}}(\mathfrak{a})=Z_{C_{\mathfrak{P}}}(\mathfrak{a}) / B_{\mathfrak{C}_{\mathfrak{P}}}(\mathfrak{a})$ where $M_{\mathcal{C}_{\mathfrak{P}}}=Z^{0}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{c_{\mathfrak{P}}}$. Then we have very similar arguments with propositions in section 4 for the local case.

Since the set of trace image $\operatorname{Tr}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}\left(\mathcal{O}_{K_{\mathfrak{F}}}\right)$ is an ideal in $\mathcal{O}_{k_{\mathrm{p}}}$, there is a nonnegative integer $r_{\mathfrak{p}}$ such that $\operatorname{Tr}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}\left(\mathcal{O}_{K_{\mathfrak{F}}}\right)=\mathfrak{p}^{r_{\mathfrak{p}}}=\left(\pi^{r_{\mathfrak{p}}}\right)$. It is known that $r_{\mathfrak{p}}=\left\lfloor t_{\mathfrak{p}} / e_{\mathfrak{p}}\right\rfloor$ where $\mathfrak{P}^{t_{\mathfrak{p}}}=\mathfrak{D}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}$, and $\mathfrak{D}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}$ is the different of $K_{\mathfrak{F}}$ over $k_{\mathfrak{p}}$ because of the same argument with (4.3). We have $H^{1}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)_{\mathfrak{q}_{\mathfrak{F}}} \cong H_{c_{\mathfrak{F}}}\left(\pi^{r_{\mathfrak{p}}}\right)=H_{c_{\mathfrak{F}}}\left(\operatorname{Tr}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}\left(\mathcal{O}_{K_{\mathfrak{F}}}\right)\right)$ because propositions 4.1, 4.2, and 4.3 hold naturally in the local case.

Since we have the tower

$$
\pi^{r_{\mathfrak{p}}} \mathcal{O}_{K_{\mathfrak{F}}}=\mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}} \subset B_{\mathfrak{C}_{\mathfrak{F}}}\left(\pi^{r_{\mathfrak{p}}}\right) \subset Z_{\mathfrak{C}_{\mathfrak{F}}}\left(\pi^{r_{\mathfrak{p}}}\right) \subset \mathcal{O}_{K_{\mathfrak{F}}},
$$

we have

$$
\left[Z_{c_{\mathfrak{P}}}\left(\pi^{r_{\mathfrak{p}}}\right): B_{\mathfrak{C}_{\mathfrak{P}}}\left(\pi^{r_{\mathfrak{p}}}\right)\right] \mid N\left(\mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}}\right) /\left[B_{\mathcal{C P}_{\mathfrak{P}}}\left(\pi^{r_{\mathfrak{p}}}\right): \mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}}\right] .
$$

As in [6], we have $\Pi^{m} M_{c_{\mathfrak{F}}}=\mathfrak{p}$ if $m \neq 0$ and $M_{\mathfrak{c q 夕}^{3}}=\mathcal{O}_{k_{\mathfrak{p}}}$ if $m=0$. Therefore we have $\Pi^{m} B_{\mathfrak{C}_{\mathfrak{F}}}\left(\pi^{r_{\mathfrak{p}}}\right)=\Pi^{m} M_{\mathfrak{C}_{\mathfrak{F}}}+\Pi^{m} \mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}}=\mathfrak{p}+\mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}+m}$ if $m \neq 0$ and $B_{\mathfrak{C}_{\mathfrak{F}}}\left(\pi^{r_{\mathfrak{p}}}\right)=\mathcal{O}_{k_{\mathfrak{p}}}+\mathfrak{P}^{e_{p} r_{p}}$ if $m=0$. Now
$\left[B_{C_{\mathfrak{F}}}\left(\pi^{r_{\mathfrak{p}}}\right): \mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}}\right]=\left|\frac{\mathfrak{p}+\mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}+m}}{\mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}+m}}\right|=\left|\frac{\mathfrak{p}}{\mathfrak{p} \cap \mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}+m}}\right|=\left|\frac{\mathfrak{p}}{\mathfrak{p}^{r_{\mathfrak{p}}+1}}\right|=N(\mathfrak{p})^{r_{\mathfrak{p}}}$
for $m \neq 0$, and

$$
\left[B_{C_{\mathfrak{P}}}\left(\pi^{r_{\mathfrak{p}}}\right): \mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}}\right]=\left|\frac{\mathcal{O}_{k_{\mathfrak{p}}}+\mathfrak{P}^{e_{p} r_{\mathfrak{p}}}}{\mathfrak{P}^{e_{p} r_{\mathfrak{p}}}}\right|=\left|\frac{\mathcal{O}_{k_{\mathfrak{p}}}}{\mathcal{O}_{k_{\mathfrak{p}}} \cap \mathfrak{P}^{e_{p} r_{\mathfrak{p}}}}\right|=\left|\frac{\mathcal{O}_{k_{p}}}{\mathfrak{p}^{r_{\mathfrak{p}}}}\right|=N(\mathfrak{p})^{r_{\mathfrak{p}}}
$$

for $m=0$. Since $N\left(\mathfrak{P}^{e_{p} r_{\mathfrak{p}}}\right)=N(\mathfrak{p})^{e_{\mathrm{p}} f_{\mathfrak{p}} r_{\mathfrak{p}}}$, finally we have
$N\left(\mathfrak{P}^{e_{p} r_{\mathfrak{p}}}\right) /\left[B_{c_{\mathfrak{p}}}\left(\pi^{r_{\mathfrak{p}}}\right): \mathfrak{P}^{e_{\mathfrak{p}} r_{\mathfrak{p}}}\right]=N(\mathfrak{p})^{e_{\mathfrak{p}} f_{\mathfrak{p}} r_{\mathfrak{p}}-r_{\mathfrak{p}}}$. We state the summary in the following proposition.

Proposition 5.3. We have

$$
H^{1}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{F}}}\right)_{c_{\mathfrak{F}}} \cong H_{c_{\mathfrak{F}}}\left(T r_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}\left(\mathcal{O}_{K_{\mathfrak{F}}}\right)\right)=H_{c_{\mathfrak{F}}}\left(\mathfrak{p}^{\left\lfloor t_{\mathfrak{p}} / e_{\mathfrak{p}}\right\rfloor}\right)
$$

and $\left[B_{\mathfrak{C P}_{\mathfrak{F}}}\left(\operatorname{Tr}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}\left(\mathcal{O}_{K_{\mathfrak{F}}}\right)\right): \operatorname{Tr}_{K_{\mathfrak{F}} / k_{\mathfrak{p}}}\left(\mathcal{O}_{K_{\mathfrak{F}}}\right) \mathcal{O}_{K_{\mathfrak{F}}}\right]=N(\mathfrak{p})^{\left\lfloor t_{\mathfrak{p}} / e_{\mathfrak{p}}\right\rfloor}$. The or$\operatorname{der}\left|H^{1}\left(G_{\mathfrak{F}}, \mathcal{O}_{K_{\mathfrak{F}}}\right)_{c_{\mathfrak{F}}}\right|$ is a divisor of $N(\mathfrak{p})^{\left(e_{p} f_{\mathfrak{p}}-1\right)\left\lfloor t_{\mathfrak{p}} / e_{\mathfrak{p}}\right\rfloor}$.

## 6. Quadratic fields

Let $K=\mathbf{Q}(\sqrt{m})$ be a quadratic number field where $m$ is squarefree, and let $k=\mathbf{Q}$. Since the Galois group $G=\langle s\rangle$ is cyclic, we have $\left|H^{n}\left(G, \mathcal{O}_{K}\right)_{c}\right|=\left|M_{c} / P_{c}\right|$ for all integer $n$ and for all cocycle $c \in$ $Z^{1}\left(G, \mathcal{O}_{K}^{\times}\right)$. Hence for all dimension $n$, we have $\left|H^{n}\left(G, \mathcal{O}_{K}\right)_{c}\right|=1$ if and only if (a) $m$ is congruent to 1 modulo 4 , or $(\mathrm{b}) m \equiv 3(\bmod 4), m>0$, $c \sim \pm \varepsilon$, and $v$ is odd, where $\varepsilon=u+v \sqrt{m}$ is the fundamental unit of norm 1 in $\mathcal{O}_{K}$, or equivalently $\left(\mathrm{b}^{\prime}\right) m \equiv 3(\bmod 4), m>0, c \sim \pm \varepsilon$,
and the central entry $a_{r / 2}$ of the simple continued fraction expansion of $\sqrt{m}=\left[a_{0} ; \overline{a_{1}, \ldots, a_{r}}\right]$ is odd (see [4]). In other words, for $m \equiv 3$ $(\bmod 4),\left|H^{n}\left(G, \mathcal{O}_{K}\right)_{c}\right|=1$ if $m_{2}$ is odd and $\left|H^{n}\left(G, \mathcal{O}_{K}\right)_{c}\right|=2$ if $m_{2}$ is even, where $c \sim \frac{s^{\Pi^{m}}}{\Pi^{m_{2}}}$ as 1-cocycle in $Z^{1}\left(G_{\mathfrak{P}}, \mathcal{O}_{K_{\mathfrak{P}}}\right)$ in the completion at $\mathfrak{P} \mid 2$ (see [7]).

This is verified by computing the 1-twisted cohomology in two explicit ways. First, let $\Delta_{c}=1-c_{s} s$ and $N_{c}=1+c_{s} s$, and denote by $M^{c}=\operatorname{ker} N_{c}$ and $P^{c}=\operatorname{im} N$ then we have $M^{c}=M_{-c}$ and $P^{c}=$ $P_{-c}$ clearly. On the other hand, as the use of theorem 4.6, we compute $H_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)$ : We may assume $m \equiv 2,3(\bmod 4)$ for considering the wild ramified case only. We have $B_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)=M_{c}+$ $\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}=M_{c}+2 \mathcal{O}_{K}$, which satisfies

$$
\left[B_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right): \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}\right]=2
$$

by Proposition 4.5. To determine $Z_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)$ when $c \sim \pm \varepsilon$, let $x+y \sqrt{m}$ be satisfying $\pm \varepsilon(x-y \sqrt{m})-(x+y \sqrt{m}) \in 2 \mathcal{O}_{K}$, equivalently,

$$
\begin{equation*}
2|x(u \pm 1)+y v m, \quad 2| x v-y(u \pm 1) \tag{6.1}
\end{equation*}
$$

If $v$ is even, the condition (6.1) gives nothing, so we have $Z_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)=$ $\mathcal{O}_{K}$ and $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c}\right|=2$. In the case $v$ is odd, which happens when $m \equiv 3(\bmod 4)$ only, we obtain $x \equiv y(\bmod 2)$ so we have $\left[Z_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)\right.$ : $\left.\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}\right]=2$ and hence $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c}\right|=1$. For $c \sim \pm 1$, it is trivial to see $Z_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)=\mathcal{O}_{K}$ and $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c}\right|=2$.

## 7. Biquadratic fields

Here we give an example of the twisted cohomology of a non-cyclic extension. Let $K=\mathbf{Q}\left(\sqrt{m_{1}}, \sqrt{m_{2}}\right)$ be a biquadratic field where $m_{1}, m_{2}$ are distinct and squarefree. $K$ has three subfields $k_{1}=\mathbf{Q}\left(\sqrt{m_{1}}\right), k_{2}=$ $\mathbf{Q}\left(\sqrt{m_{2}}\right)$, and $k_{3}=\mathbf{Q}\left(\sqrt{m_{3}}\right)$ where $m_{3}=\frac{m_{1}}{d} \frac{m_{2}}{d}$ and $d=\operatorname{gcd}\left(m_{1}, m_{2}\right)$. The Galois group of $K$ over $\mathbf{Q}$ is $G=\operatorname{Gal}(K / \mathbf{Q})=\left\{1, s_{1}, s_{2}, s_{3}\right\}$ where $s_{i} s_{j}=s_{k}$ with $i, j, k$ distinct, $s_{i}^{2}=1$ for all $i$, and for each $i s_{i}$ acts trivially on the subfield $k_{i}$, not on $k_{j}$ for $j \neq i$. It is known that any of biquadratic fields falls into the following three types:
[Type I] $m_{1} \equiv m_{2} \equiv m_{3} \equiv 1(\bmod 4)$ with

$$
\mathcal{O}_{K}=\left[1, \frac{1+\sqrt{m_{1}}}{2}, \frac{1+\sqrt{m_{2}}}{2},\left(\frac{1+\sqrt{m_{1}}}{2}\right)\left(\frac{1+\sqrt{m_{2}}}{2}\right)\right]_{\mathbf{Z}}
$$

[Type II] $m_{1} \equiv 1$ and $m_{2} \equiv m_{3} \equiv 2,3(\bmod 4)$ with

$$
\mathcal{O}_{K}=\left[1, \frac{1+\sqrt{m_{1}}}{2}, \sqrt{m_{2}}, \frac{\sqrt{m_{2}}+\sqrt{m_{3}}}{2}\right]_{\mathbf{Z}} .
$$

[Type III] $m_{1} \equiv 3$ and $m_{2} \equiv m_{3} \equiv 2(\bmod 4)$ with

$$
\mathcal{O}_{K}=\left[1, \sqrt{m_{1}}, \sqrt{m_{2}}, \frac{\sqrt{m_{2}}+\sqrt{m_{3}}}{2}\right]_{\mathbf{Z}} .
$$

The unit group $\mathcal{O}_{K}^{\times}$has one or three fundamental units if only one or three of $m_{1}, m_{2}, m_{3}$ are positive, respectively. Denote by $\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}$ the fundamental units of $k_{1}, k_{2}, k_{3}$ respectively, with norm 1 , if it is the case that ones exist. We also denote $\varepsilon_{i}=u_{i}+v_{i} \omega_{i}$ for $u_{i}, v_{i} \in \mathbf{Z}$ and $\omega_{i}=\frac{1+\sqrt{m_{i}}}{2}$ if $m_{i} \equiv 1(\bmod 4), \omega_{i}=\sqrt{m_{i}}$ if $m_{i} \equiv 2,3(\bmod 4)$.

For a 1-cocycle $c \in Z^{1}\left(G, \mathcal{O}_{K}{ }^{\times}\right), M_{c} / P_{c}$ for the biquadratic fields is computed along the 2 -adic property of $\gamma=[c]$ in [2] and we give an explicit computation of $M_{c} / P_{c}$ and $H^{1}\left(G, \mathcal{O}_{K}\right)_{c}$ globally for certain cocycles $c$ in $\mathcal{O}_{K}^{\times}$, which inherit cocycles in the unit group of quadratic subfields, and we compare with the case of the quadratic field. We may consider only the cases [Type II] and [Type III] because in [Type I], we have $\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)=\mathbf{Z}$ so that the extension is tamely ramified, hence all the twisted cohomologies vanish.

For $i=1,2,3$, define $c_{i}: G \rightarrow \mathcal{O}_{K}{ }^{\times}$as $c_{i 1}=1, c_{i s_{i}}=1$ and $c_{i_{s_{j}}}=\varepsilon_{i}$, $j \neq i$ then $c_{i}$ is a 1 -cocycle into $\mathcal{O}_{K}{ }^{\times}$. Since the nontrivial action on $k_{i}$ by $G_{i}=\operatorname{Gal}\left(k_{i} / \mathbf{Q}\right)$ is the same as ones by $s_{j}$ for $j \neq i$, we may regard in the quadratic field $k_{i} s_{j}=s_{k} \in G_{i}$ and $c_{i} \in Z^{1}\left(G_{i}, \mathcal{O}_{k_{i}}{ }^{\times}\right)$. Denote by

$$
\begin{aligned}
M_{c_{i}}\left(\mathcal{O}_{K}\right) & =M_{c_{i}}=Z^{0}\left(G, \mathcal{O}_{K}\right)_{c_{i}}, \\
M_{c_{i}}\left(\mathcal{O}_{k_{i}}\right) & =Z^{0}\left(G_{i}, \mathcal{O}_{k_{i}}\right)_{c_{i}}, \\
P_{c_{i}}\left(\mathcal{O}_{K}\right) & =P_{c_{i}}=\left\{p_{c_{i} \mathcal{O}_{K}}(\alpha)=\sum_{s \in G} c_{s}^{s} \alpha ; \alpha \in \mathcal{O}_{K}\right\}, \text { and } \\
P_{c_{i}}\left(\mathcal{O}_{k_{i}}\right) & =\left\{p_{c_{i} \mathcal{O}_{k_{i}}}(\alpha)=\alpha+\varepsilon_{i}{ }^{s j_{j}} \alpha ; \alpha \in \mathcal{O}_{k_{i}}\right\} .
\end{aligned}
$$

### 7.1. 0-dimensional twisted cohomology

Let $\alpha \in M_{c_{i}}\left(\mathcal{O}_{K}\right)$. Since ${ }^{s_{i}} \alpha=\alpha$ if and only if $\alpha \in \mathcal{O}_{k_{i}}$, we have

$$
\begin{equation*}
M_{c_{i}}\left(\mathcal{O}_{K}\right)=M_{c_{i}}\left(\mathcal{O}_{k_{i}}\right) . \tag{7.1}
\end{equation*}
$$

We will compute $P_{c_{i}}\left(\mathcal{O}_{K}\right)$ : First note that $\alpha+{ }^{s_{i}} \alpha \in \mathcal{O}_{k_{i}}$ and

$$
\begin{aligned}
p_{c_{i} \mathcal{O}_{K}}(\alpha) & =\sum_{s \in G} c_{s}{ }^{s} \alpha=\alpha+{ }^{s_{i}} \alpha+\varepsilon_{i}{ }^{s_{j}} \alpha+\varepsilon_{i}{ }^{s_{k}} \alpha \\
& =\left(\alpha+{ }^{s_{i}} \alpha\right)+\varepsilon_{i}{ }^{s_{j}}\left(\alpha+{ }^{s_{i}} \alpha\right) \\
& =p_{c_{i} \mathcal{O}_{k_{i}}}\left(\alpha+{ }^{s_{i}} \alpha\right) .
\end{aligned}
$$

[Type II] Let $\alpha=x+y\left(\frac{1+\sqrt{m_{1}}}{2}\right)+z \sqrt{m_{2}}+w\left(\frac{\sqrt{m_{2}}+\sqrt{m_{3}}}{2}\right)$ with $x, y, z, w \in$
Z. Then we have

$$
\alpha+{ }^{s_{i}} \alpha= \begin{cases}2 x+2 y\left(\frac{1+\sqrt{m_{1}}}{2}\right), & i=1 \\ (2 x+y)+(2 z+w) \sqrt{m_{2}}, & i=2 \\ (2 x+y)+w \sqrt{m_{3}}, & i=3 .\end{cases}
$$

So we have

$$
P_{c_{1}}\left(\mathcal{O}_{K}\right)=2 P_{c_{1}}\left(\mathcal{O}_{k_{1}}\right), \quad P_{c_{2}}\left(\mathcal{O}_{K}\right)=P_{c_{2}}\left(\mathcal{O}_{k_{2}}\right), \quad P_{c_{3}}\left(\mathcal{O}_{K}\right)=P_{c_{3}}\left(\mathcal{O}_{k_{3}}\right) .
$$

Hence if $m_{2} \equiv m_{3} \equiv 3(\bmod 4)$,

$$
\begin{aligned}
\left|\frac{M_{c_{1}}}{P_{c_{1}}}\right| & =2 \\
\left|\frac{M_{c_{2}}}{P_{c_{2}}}\right| & = \begin{cases}1 & \text { if } v_{2} \text { is odd } \\
2 & \text { if } v_{2} \text { is even }\end{cases} \\
\left|\frac{M_{c_{3}}}{P_{c_{3}}}\right| & = \begin{cases}1 & \text { if } v_{3} \text { is odd } \\
2 & \text { if } v_{3} \text { is even }\end{cases}
\end{aligned}
$$

while if $m_{2} \equiv m_{3} \equiv 2(\bmod 4)$, it is shown in $[2]$ that $\left|\frac{M_{c}}{P_{c}}\right|=2$ for all cocycles $c$.
[Type III] Let $\alpha=x+y \sqrt{m_{1}}+z \sqrt{m_{2}}+w\left(\frac{\sqrt{m_{2}}+\sqrt{m_{3}}}{2}\right)$ with $x, y, z, w \in \mathbf{Z}$.
Then

$$
\alpha+{ }^{s_{i}} \alpha= \begin{cases}2 x+2 y \sqrt{m_{1}}, & i=1 \\ 2 x+(2 z+w) \sqrt{m_{2}}, & i=2 \\ 2 x+w \sqrt{m_{3}}, & i=3 .\end{cases}
$$

We obtain that

$$
P_{c_{1}}\left(\mathcal{O}_{K}\right)=2 P_{c_{1}}\left(\mathcal{O}_{k_{1}}\right), \text { and } P_{c_{i}}\left(\mathcal{O}_{K}\right)=p_{c_{i} \mathcal{O}_{k_{i}}}\left(\left[2, \sqrt{m_{i}}\right] \mathbf{Z}\right) \subset P_{c_{i}}\left(\mathcal{O}_{k_{i}}\right),
$$

for $i=2,3$. For $i=2,3$, let $\xi_{i} \in \mathcal{O}_{k_{i}}$ be an integer in $k_{i}$ such that $c_{i s_{j}}=\frac{{ }^{s_{j} \xi_{i}}}{\xi_{i}}$. We may choose $\xi_{i}=1+{ }^{s_{j}} \varepsilon_{i}=\left(u_{i}+1\right)-v_{i} \sqrt{m_{i}}$. Then
$\xi_{i} P_{c_{i}}\left(\mathcal{O}_{k_{i}}\right)=\operatorname{Tr}_{k_{i} / \mathbf{Q}}\left(\xi_{i} \mathcal{O}_{k_{i}}\right)$ and
$\xi_{i} p_{c_{i} \mathcal{O}_{k_{i}}}\left(\left[2, \sqrt{m_{i}}\right] \mathbf{Z}\right)=\operatorname{Tr}_{k_{i} / \mathbf{Q}}\left(\xi_{i}\left[2, \sqrt{m_{i}}\right] \mathbf{Z}\right)$. It is easy to see that

$$
\begin{align*}
\operatorname{Tr}_{k_{i} / \mathbf{Q}}\left(\xi_{i} \mathcal{O}_{k_{i}}\right) & =\left\{2\left(\left(u_{i}+1\right) x-y v_{i} m_{i}\right) ; x, y \in \mathbf{Z}\right\}  \tag{7.2}\\
& =2 \operatorname{gcd}\left(u_{i}+1, v_{i} m_{i}\right) \mathbf{Z}  \tag{7.3}\\
\operatorname{Tr}_{k_{i} / \mathbf{Q}}\left(\xi_{i}\left[2, \sqrt{m_{i}}\right] \mathbf{Z}\right) & =\left\{2\left(2\left(u_{i}+1\right) x-y v_{i} m_{i}\right) ; x, y \in \mathbf{Z}\right\}  \tag{7.4}\\
& =2 \operatorname{gcd}\left(2\left(u_{i}+1\right), v_{i} m_{i}\right) \mathbf{Z} \tag{7.5}
\end{align*}
$$

Hence we have

$$
p_{c_{i} \mathcal{O}_{k_{i}}}\left(\left[2, \sqrt{m_{i}}\right] \mathbf{Z}\right)= \begin{cases}P_{c_{i}}\left(\mathcal{O}_{k_{i}}\right) & \text { if } D_{i} \text { is odd } \\ 2 P_{c_{i}}\left(\mathcal{O}_{k_{i}}\right) & \text { if } D_{i} \text { is even }\end{cases}
$$

if we denote by

$$
\begin{equation*}
D_{i}=\frac{v_{i}}{\operatorname{gcd}\left(u_{i}+1, v_{i}\right)} \tag{7.6}
\end{equation*}
$$

As a result, we have

$$
\begin{aligned}
\left|\frac{M_{c_{1}}}{P_{c_{1}}}\right| & = \begin{cases}2 & \text { if } v_{1} \text { is odd } \\
4 & \text { if } v_{1} \text { is even }\end{cases} \\
\left|\frac{M_{c_{i}}}{P_{c_{i}}}\right| & =\left\{\begin{array}{ll}
2 & \text { if } D_{i} \text { is odd } \\
4 & \text { if } D_{i} \text { is even }
\end{array} \quad(i=2,3)\right.
\end{aligned}
$$

We can rewrite the condition for $i=2,3$ as

$$
\left|\frac{M_{c_{i}}}{P_{c_{i}}}\right|= \begin{cases}4 & \text { if } u_{i} \equiv 1, v_{i} \equiv 0 \quad(\bmod 4) \quad(i=2,3) \\ 2 & \text { otherwise }\end{cases}
$$

Indeed, if $u_{i} \equiv 1, v_{i} \equiv 0(\bmod 4), \operatorname{gcd}\left(u_{i}+1, v_{i}\right)=2$ so trivially $D_{i}$ is even. Also it is easy to see that if $v_{i} \equiv 2(\bmod 4)$ then $D_{i}$ is odd for any odd $u_{i}$. The case remained is that $u_{i} \equiv 3, v_{i} \equiv 0$ $(\bmod 4)$. Let $\nu \geq 2$ be satisfying $2^{\nu} \| v_{i}$. By Lemma 7 in [4], we have $u_{i}+1 \equiv 0$ or $2\left(\bmod 2^{\nu+1}\right)$, and hence we have that $D_{i}$ is odd.

REMARK 7.1. For $m_{i} \equiv 2(\bmod 4)$, squarefree, with the norm of fundamental unit $N\left(\varepsilon_{i}\right)=1$, the both parity of $D_{i}$ occur, while the odd case appears more frequently. Up to 500 , we have $m_{i}$ 's with odd $D_{i}$ :
$6,14,22,30,34,38,42,46,62,70,78,86,94,102,110,118,134$, $138,142,154,158,166,174,182,186,190,194,206,210,214,222$, $230,238,246,254,262,266,278,282,286,302,210,218,322,326$,
$330,334,358,366,374,382,386,390,398,406,422,426,430,434$, $438,446,454,462,470,474,478,482,494$,
and $m_{i}$ 's with even $D_{i}\left(\right.$ that is, $\left.u_{i} \equiv 1, v_{i} \equiv 0(\bmod 4)\right)$ :
$66,114,146,178,258,354,402,410,418,466,498$.

### 7.2. 1-dimensional twisted cohomology

We compute $Z_{c_{i}}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)$ in order to get the index $\left[Z_{c_{i}}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right): \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}\right]$, while

$$
\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c}\right|=\left[Z_{c_{i}}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right): \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}\right] /\left|\mathcal{O}_{k} / \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right|
$$

by Proposition 4.5. For the condition to $\alpha \in Z_{c_{i}}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right)$, note that for distinct $i$, $j$, and $k$, when $c_{i s_{i}}{ }^{s_{i}} \alpha-\alpha={ }^{s_{i}} \alpha-\alpha \in \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}$, since $\varepsilon_{i}{ }^{s_{j}} \alpha-\alpha={ }^{s_{i}}\left(\varepsilon_{i}{ }^{s_{k}} \alpha-\alpha\right)+{ }^{s_{i}} \alpha-\alpha$, we have

$$
c_{i s_{j}}{ }^{s_{j}} \alpha-\alpha=\varepsilon_{i}{ }^{s_{j}} \alpha-\alpha \in \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}
$$

if and only if

$$
c_{i s_{k}}{ }^{s_{k}} \alpha-\alpha=\varepsilon_{i}{ }^{{ }^{s}} \alpha-\alpha \in \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}
$$

hence it is enough to check cocycle images of only two automorphisms, one with the same index $i$ and one any other.
[Type II] Note that $\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)=2 \mathbf{Z}$ and
$\left[B_{c}\left(\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)\right): \operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right) \mathcal{O}_{K}\right]=2$ for all 1-cocycles $c$ by Proposition 4.5. Denote by the integral basis elements $\eta_{1}=1, \eta_{2}=$ $\frac{1+\sqrt{m_{1}}}{2}, \eta_{3}=\sqrt{m_{2}}, \eta_{4}=\frac{\sqrt{m_{2}}+\sqrt{m_{3}}}{2}$ so that $\mathcal{O}_{K}=\left[\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right]_{\mathbf{z}}$.
(a) $c=c_{1}$.

Let $\alpha=x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4} \in Z_{c_{1}}\left(2 \mathcal{O}_{K}\right)$. The condition ${ }^{s_{1}} \alpha-\alpha \in 2 \mathcal{O}_{K}$ holds for all integer in $\mathcal{O}_{K}$. Since

$$
\begin{aligned}
\varepsilon_{1}^{s_{2}} \alpha-\alpha & =\left[x\left(u_{1}-1\right)+y\left\{u_{1}+v_{1}\left(\frac{1-m_{1}}{4}\right)\right\}\right] \eta_{1} \\
& +\left[x v_{1}-y\left(u_{1}+1\right)\right] \eta_{2} \\
& +\left[z\left\{u_{1}-1-v_{1}\left(\frac{d-1}{2}\right)\right\}\right. \\
& \left.+w\left\{u_{1}+v_{1}\left(\frac{2-m_{1} / d-d}{4}\right)\right\}\right] \eta_{3} \\
& +\left[z d v_{1}+w\left\{v_{1}\left(\frac{d-1}{2}\right)-u_{1}-1\right\}\right] \eta_{4}
\end{aligned}
$$

where $\frac{1-m_{1}}{4}, \frac{d-1}{2}$, and $\frac{2-m_{1} / d-d}{4}$ are integers, we have the system of congruence equations

$$
\begin{array}{rlr}
x\left(u_{1}-1\right)+y\left(u_{1}+v_{1}\left(1-m_{1}\right) / 4\right) & \equiv 0 \quad(\bmod 2) \\
x v_{1}-y\left(u_{1}+1\right) & \equiv 0 \quad(\bmod 2) \tag{7.8}
\end{array}
$$

$$
\begin{equation*}
z\left(u_{1}-1-v_{1}(d-1) / 2\right)+w\left(u_{1}+v_{1}\left(2-m_{1} / d-d\right) / 4\right) \equiv 0 \quad(\bmod 2) \tag{7.9}
\end{equation*}
$$

$$
\begin{equation*}
z v_{1}+w\left(v_{1}(d-1) / 2-u_{1}-1\right) \equiv 0 \quad(\bmod 2) \tag{7.10}
\end{equation*}
$$

for $d$ is odd as a divisor of $m_{1}$. We separate the cases along to the parity of $u_{1}$ and $v_{1}$ :
(i) Suppose $v_{1}$ is even. Then $u_{1}$ is odd and the system of equations turns out to be $y \equiv w \equiv 0(\bmod 2)$. We have $\left[Z_{c_{1}}\left(2 \mathcal{O}_{K}\right): 2 \mathcal{O}_{K}\right]=4$ and hence $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{1}}\right|=\left[Z_{c_{1}}\left(2 \mathcal{O}_{K}\right):\right.$ $\left.B_{c_{1}}\left(2 \mathcal{O}_{K}\right)\right]=2$.
(ii) Suppose $v_{1}$ is odd and $u_{1}$ is even. Note the fact that $v_{1}$ is odd implies $m_{1} \equiv 5(\bmod 8)$ since if we assume $m_{1} \equiv 1$ $(\bmod 8)$ then $\frac{m_{1}-1}{4}$ is even and $1=N\left(\varepsilon_{1}\right)=u_{1}\left(u_{1}+v_{1}\right)-$ $v_{1}^{2} \frac{m_{1}-1}{4} \equiv u_{1}\left(u_{1}+1\right) \equiv 0(\bmod 2)$ makes a contradiction. Now since $m_{1} \equiv 5(\bmod 8)$, we have that $\frac{m_{1}-1}{4}$ is odd and $\frac{2-m_{1} / d-d}{4} \equiv \frac{d+1}{2}(\bmod 2)$. Indeed, since $d$ is odd we have $d^{2} \equiv 1(\bmod 8)$ so $m_{1} / d \equiv m_{1} d(\bmod 8)$ and

$$
\begin{aligned}
2-m_{1} / d-d & \equiv 2-5 d-d \quad(\bmod 8) \\
& \equiv 2-6(d+1)+6 \quad(\bmod 8) \\
& \equiv 8-12\left(\frac{d+1}{2}\right) \quad(\bmod 8) \\
& \equiv 4\left(\frac{d+1}{2}\right) \quad(\bmod 8)
\end{aligned}
$$

The system of equations (7.7)-(7.10) becomes

$$
\begin{array}{rlr}
x+y & \equiv 0 & (\bmod 2) \\
z(1-(d-1) / 2)+w(d+1) / 2 & \equiv 0 & (\bmod 2) \\
z+w((d-1) / 2-1) & \equiv 0 & (\bmod 2)
\end{array}
$$

First suppose that $(d-1) / 2$ is odd and $(d+1) / 2$ is even. The system of equation turns to $x \equiv y(\bmod 2)$ and $z \equiv 0$ $(\bmod 2)$. On the other hand, if $(d-1) / 2$ is even and $(d+1) / 2$ is odd, then the system of equation turns to $x \equiv y(\bmod 2)$ and $z \equiv w(\bmod 2)$. In any case, the
index of $Z_{c_{1}}\left(2 \mathcal{O}_{K}\right)$ from $2 \mathcal{O}_{K}$ is equal to 4 and hence $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{1}}\right|=2$.
(iii) Suppose $v_{1}$ and $u_{1}$ are odd. We have that $\frac{m_{1}-1}{4}$ is odd and $\frac{2-m_{1} / d-d}{4} \equiv \frac{d+1}{2}$. The system of equations (7.7)-(7.10) turns to

$$
\begin{align*}
x & \equiv 0 \quad(\bmod 2)  \tag{7.14}\\
-z(d-1) / 2+w(1+(d+1) / 2) & \equiv 0 \quad(\bmod 2)  \tag{7.15}\\
z+w(d-1) / 2 & \equiv 0 \quad(\bmod 2) . \tag{7.16}
\end{align*}
$$

If $d \equiv 1(\bmod 4)$, since $(d-1) / 2$ is even and $(d+1) / 2$ is odd, we obtain $x \equiv 0(\bmod 2)$ and $z \equiv 0(\bmod 2)$. If $d \equiv 3(\bmod 4)$ then we obtain $x \equiv 0(\bmod 2)$ and $z \equiv w$ $(\bmod 2)$. Either of the cases, we have $\left[Z_{c_{1}}\left(2 \mathcal{O}_{K}\right): 2 \mathcal{O}_{K}\right]=$ 4 and therefore we have $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{1}}\right|=\left[Z_{c_{1}}\left(2 \mathcal{O}_{K}\right)\right.$ : $\left.B_{c_{1}}\left(2 \mathcal{O}_{K}\right)\right]=2$.
(b) $c=c_{2}$.

Let $\alpha=x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4} \in Z_{c_{2}}\left(2 \mathcal{O}_{K}\right)$. From ${ }^{s_{2}} \alpha-\alpha=$ $y \eta_{1}-2 y \eta_{2}+w \eta_{3}-2 w \eta_{4} \in 2 \mathcal{O}_{K}$, we obtain that $y$, $w$ are even.
Now we have

$$
\begin{aligned}
\varepsilon_{2}^{s_{1}} \alpha-\alpha= & {\left[x\left(u_{2}-1\right)-z v_{2} m_{2}-w v_{2}\left(\frac{m_{2}-m_{2} / d}{2}\right)\right] \eta_{1} } \\
& +\left[y\left(u_{2}-1\right)-w v_{2} \frac{m_{2}}{d}\right] \eta_{2} \\
& +\left[x v_{2}-y v_{2}\left(\frac{d-1}{2}\right)-z\left(u_{2}+1\right)\right] \eta_{3} \\
& +\left[y v_{2} d-w\left(u_{2}+1\right)\right] \eta_{4} \\
& \in 2 \mathcal{O}_{K}
\end{aligned}
$$

which yields the system of equations

$$
\begin{align*}
x\left(u_{2}-1\right)-z v_{2} m_{2} & \equiv 0 \quad(\bmod 2)  \tag{7.17}\\
x v_{2}-z\left(u_{2}+1\right) & \equiv 0 \quad(\bmod 2) \tag{7.18}
\end{align*}
$$

for $y, w \equiv 0(\bmod 2)$. Since we have that $u_{2}$ and $v_{2}$ have distinct parity, there are two cases:
(i) Suppose $v_{2}$ is odd. Then $m_{2}$ is odd and $u_{2}$ is even. the system of equations (7.17)-(7.18) turns to be $x \equiv z(\bmod 2)$. So $Z_{c_{2}}\left(2 \mathcal{O}_{K}\right)$ is the set of elements $x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4}$ with $x \equiv z, y \equiv w \equiv 0(\bmod 2)$ and has index 2 from $2 \mathcal{O}_{K}$. Therefore we have $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{2}}\right|=1$.
(ii) Suppose $v_{2}$ is even. The system of equations (7.17)-(7.18) does not give any restricting conditions. So we have $Z_{c_{2}}\left(2 \mathcal{O}_{K}\right)$ is the set of elements $x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4}$ with $y \equiv w \equiv 0$ $(\bmod 2)$ with index 4 from $2 \mathcal{O}_{K}$ and hence $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{2}}\right|=$ 2.
(c) $c=c_{3}$.

Let $\alpha=x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4} \in Z_{c_{3}}\left(2 \mathcal{O}_{K}\right)$. From ${ }^{s_{3}} \alpha-\alpha=$ $y \eta_{1}-2 y \eta_{2}-(2 z+w) \eta_{3} \in 2 \mathcal{O}_{K}$ we have $y \equiv w \equiv 0(\bmod 2)$.
Now

$$
\begin{aligned}
\varepsilon_{3}{ }^{s_{1}} \alpha-\alpha= & {\left[x\left(u_{3}-1\right)+z v_{3}\left(\frac{m_{2}}{d}\right)+w v_{3}\left(\frac{m_{2} / d-m_{3}}{2}\right)\right] \eta_{1} } \\
& +\left[y\left(u_{3}-1\right)-2 z v_{3}\left(\frac{m_{2}}{d}\right)-w v_{3}\left(\frac{m_{2}}{d}\right)\right] \eta_{2} \\
& +\left[-x v_{3}+y v_{3}\left(\frac{m_{1} / d-1}{2}\right)-z\left(u_{3}+1\right)\right] \eta_{3} \\
& +\left[2 x v_{3}+y v_{3}-w\left(u_{3}+1\right)\right] \eta_{4}
\end{aligned}
$$

where $\frac{m_{2}}{d}, \frac{m_{2} / d-m_{3}}{2}, \frac{m_{1} / d-1}{2}$ are integers. Since $y \equiv w \equiv 0$ $(\bmod 2)$, we obtain the system of congruence equations

$$
\begin{align*}
x\left(u_{3}-1\right)+z v_{3}\left(m_{2} / d\right) & \equiv 0 \quad(\bmod 2)  \tag{7.19}\\
x v_{3}+z\left(u_{3}+1\right) & \equiv 0 \quad(\bmod 2) \tag{7.20}
\end{align*}
$$

(i) Suppose $v_{3}$ is odd. Then $m_{3}$ and $m_{2}$ are odd, and we obtain from the system of equations (7.19)-(7.20) that $x+$ $z \equiv 0(\bmod 2)$. So we have $Z_{c_{3}}\left(2 \mathcal{O}_{K}\right)$ is the set of elements $x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4}$ with $x \equiv z, y \equiv w \equiv 0(\bmod 2)$ with index 2 from $2 \mathcal{O}_{K}$ and hence $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{3}}\right|=1$.
(ii) Suppose $v_{3}$ is even. We obtain no more conditions other than $y \equiv w \equiv 0(\bmod 2)$ from the system of equations (7.19)-(7.20). $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{3}}\right|=2$.
[Type III] Note that $\operatorname{Tr}_{K / \mathbf{Q}}\left(\mathcal{O}_{K}\right)=4 \mathbf{Z}$ and we have $\left[B_{c}\left(4 \mathcal{O}_{K}\right): 4 \mathcal{O}_{K}\right]=$ 4 for all cocycles $c$ by Proposition 4.5. Denote by the integral basis elements $\eta_{1}=1, \eta_{2}=\sqrt{m_{1}}, \eta_{3}=\sqrt{m_{2}}, \eta_{4}=\frac{\sqrt{m_{2}}+\sqrt{m_{3}}}{2}$ so that $\mathcal{O}_{K}=\left[\eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}\right]_{\mathbf{z}}$.
(a) $c=c_{1}$.

Let $\alpha=x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4} \in Z_{c_{1}}\left(4 \mathcal{O}_{K}\right)$. From ${ }^{s_{1}} \alpha-\alpha=$ $-2 z \eta_{3}-2 w \eta_{4} \in 4 \mathcal{O}_{K}$ we have $z \equiv w \equiv 0(\bmod 2)$. On the
other hand, we have that

$$
\begin{aligned}
\varepsilon_{1}{ }^{s_{2}} \alpha-\alpha= & {\left[x\left(u_{1}-1\right)-y v_{1} m_{1}\right] \eta_{1} } \\
& +\left[x v_{1}-y\left(u_{1}+1\right)\right] \eta_{2} \\
& +\left[z\left(u_{1}-1-v_{1} d\right)+w\left\{u_{1}-v_{1}\left(\frac{m_{1} / d+d}{2}\right)\right\}\right] \eta_{3} \\
& +\left[2 z v_{1} d+w\left(-u_{1}-1+v_{1} d\right)\right] \eta_{4} \\
\in & 4 \mathcal{O}_{K}
\end{aligned}
$$

where $\left(\frac{m_{1} / d+d}{2}\right)$ is an integer, which yields the system of congruence equations

$$
\begin{align*}
x\left(u_{1}-1\right)+y v_{1} & \equiv 0 \quad(\bmod 4)  \tag{7.21}\\
x v_{1}-y\left(u_{1}+1\right) & \equiv 0 \quad(\bmod 4)  \tag{7.22}\\
w u_{1} & \equiv 0 \quad(\bmod 4) \tag{7.23}
\end{align*}
$$

since $m_{1} \equiv 3(\bmod 4), u_{1} \not \equiv v_{1}(\bmod 2), z \equiv w \equiv 0(\bmod 2)$, $d \equiv 1(\bmod 2)$, and $\frac{m_{1} / d+d}{2} \equiv 0(\bmod 2)$.
(i) Suppose $v_{1}$ is odd and so $u_{1}$ is even. Then equations (7.21) and (7.22) are equivalent and equation (7.23) is trivial. We obtain $x \equiv y(\bmod 4)$ if $u_{1}+1 \equiv v_{1}(\bmod 4)$ and we obtain $x \equiv-y(\bmod 4)$ if $u_{1}-1 \equiv v_{1}(\bmod 4)$. Together with the condition $z \equiv w \equiv 0(\bmod 2)$, we have that $\left[Z_{c_{1}}\left(4 \mathcal{O}_{K}\right): 4 \mathcal{O}_{K}\right]=16$. Hence $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{1}}\right|=4$, which is the case that $\left|\widehat{H}^{0}\left(G, \mathcal{O}_{K}\right)_{c}\right| \neq\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c}\right|$.
(ii) Suppose $v_{1}$ is even. Note that $v_{1} \equiv 0(\bmod 4)$. Indeed, since $u_{1}$ is odd, we have $\left(\frac{u_{1}-1}{2}\right)\left(\frac{u_{1}+1}{2}\right)=m_{1}\left(\frac{v_{1}}{2}\right)^{2}$ with integer terms. As the multiple of consecutive numbers, the left hand side is even, so $v_{1} / 2$ is even. Now, equation (7.23) gives $w \equiv 0(\bmod 4)$. Equations (7.21) and (7.22) gives that if $u_{1} \equiv 1(\bmod 4)$ then $y \equiv 0(\bmod 2)$ and if $u_{1} \equiv 3(\bmod 4)$ then $x \equiv 0(\bmod 2)$. Together with the conditions $z \equiv 0(\bmod 2)$ and $w \equiv 0(\bmod 4)$, we have that $\left[Z_{c_{1}}\left(4 \mathcal{O}_{K}\right): 4 \mathcal{O}_{K}\right]=16$ and $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{1}}\right|=4$.
(b) $c=c_{2}$.

Let $\alpha=x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4} \in Z_{c_{2}}\left(4 \mathcal{O}_{K}\right)$. Since ${ }^{s_{2}} \alpha-\alpha=$ $-2 y \eta_{2}+w \eta_{3}-2 w \eta_{4} \in 4 \mathcal{O}_{K}$, we have $y \equiv 0(\bmod 2)$ and $w \equiv 0$ $(\bmod 4)$.

Now from the condition

$$
\begin{aligned}
\varepsilon_{2}{ }^{s_{1}} \alpha-\alpha= & {\left[x\left(u_{2}-1\right)-z v_{2} m_{2}-w v_{2}\left(\frac{m_{2}}{2}\right)\right] \eta_{1} } \\
& +\left[y\left(u_{2}-1\right)-w v_{2}\left(\frac{m_{2}}{2 d}\right)\right] \eta_{2} \\
& +\left[x v_{2}-y v_{2} d-z\left(u_{2}+1\right)\right] \eta_{3} \\
& +\left[2 y v_{2} d-w\left(u_{2}+1\right)\right] \eta_{4} \\
\in & 4 \mathcal{O}_{K}
\end{aligned}
$$

we obtain the system of congruence equations

$$
\begin{align*}
x\left(u_{2}-1\right) & \equiv 0 \quad(\bmod 4)  \tag{7.24}\\
x v_{2}-z\left(u_{2}+1\right) & \equiv 0 \quad(\bmod 4) \tag{7.25}
\end{align*}
$$

since $m_{2} \equiv 2(\bmod 4), u_{2} \equiv 1(\bmod 2)$, and $v_{2} \equiv 0(\bmod 2)$. If $u_{2} \equiv 3(\bmod 4)$, the system of congruence equations turns to $x \equiv 0(\bmod 2)$. When $u_{2} \equiv 1(\bmod 4)$, if $v_{2} \equiv 0(\bmod 4)$ then the system of equations implies that $z \equiv 0(\bmod 2)$, and if $v_{2} \equiv 2(\bmod 4)$, one does that $x \equiv z(\bmod 2)$. Therefore, we have $Z_{c_{2}}\left(4 \mathcal{O}_{K}\right)$ is the set of elements $x \eta_{1}+y \eta_{2}+z \eta_{3}+$ $w \eta_{4}$ with $x \equiv y \equiv 0(\bmod 2)$ and $w \equiv 0(\bmod 4)$ if $u_{2} \equiv$ $3(\bmod 4)$, the set of elements $x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4}$ with $y \equiv z \equiv 0(\bmod 2)$ and $w \equiv 0(\bmod 4)$ if $u_{2} \equiv 1(\bmod 4)$ and $v_{2} \equiv 0(\bmod 4)$, and the set of elements defined by the conditions $x \equiv z(\bmod 2), y \equiv 0(\bmod 2)$, and $w \equiv 0(\bmod 4)$ if $u_{2} \equiv 1(\bmod 4)$ and $v_{2} \equiv 2(\bmod 4)$. In any cases the index of $Z_{c_{2}}\left(4 \mathcal{O}_{K}\right)$ from $4 \mathcal{O}_{K}$ is 16 and we have $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{2}}\right|=4$. Comparing to the order of 0-Tate twisted cohomology, we have $\left|\widehat{H}^{0}\left(G, \mathcal{O}_{K}\right)_{c_{2}}\right| \neq\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{2}}\right|$ if $u_{2} \equiv 3(\bmod 4)$, or if $u_{2} \equiv$ $1(\bmod 4)$ and $v_{2} \equiv 2(\bmod 4)$.
(c) $c=c_{3}$.

Let $\alpha=x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4} \in Z_{c_{3}}\left(4 \mathcal{O}_{K}\right)$. Since ${ }^{s_{3}} \alpha-$ $\alpha=-2 y \eta_{2}-(w+2 z) \eta_{3} \in 4 \mathcal{O}_{K}$, we have $y \equiv 0(\bmod 2)$ and $w+2 z \equiv 0(\bmod 4)$. The latter condition shows that $w$ is even, and that $w \equiv 0(\bmod 4)$ if and only if $z \equiv 0(\bmod 2)$.

Now from the condition

$$
\begin{aligned}
\varepsilon_{3}{ }^{s_{1}} \alpha-\alpha= & {\left[x\left(u_{3}-1\right)-w v_{3}\left(\frac{m_{3}}{2}\right)\right] \eta_{1} } \\
& +\left[y\left(u_{3}-1\right)-z v_{3}\left(\frac{m_{2}}{d}\right)-w v_{3}\left(\frac{m_{2}}{2 d}\right)\right] \eta_{2} \\
& +\left[-x v_{3}+y v_{3}\left(\frac{m_{1}}{d}\right)-z\left(u_{3}+1\right)\right] \eta_{3} \\
& +\left[2 x v_{3}-w\left(u_{3}+1\right)\right] \eta_{4} \\
\in & 4 \mathcal{O}_{K}
\end{aligned}
$$

we obtain the system of congruence equations

$$
\begin{align*}
x\left(u_{3}-1\right) & \equiv 0 \quad(\bmod 4)  \tag{7.26}\\
-x v_{3}-z\left(u_{3}+1\right) & \equiv 0 \quad(\bmod 4) \tag{7.27}
\end{align*}
$$

and it turns to be following equations due to $u_{3}, v_{3}$ modulo 4 : $z \equiv 0(\bmod 2)$ and $w \equiv 0(\bmod 4)$ if $u_{3} \equiv 1(\bmod 4)$ and $v_{3} \equiv 0(\bmod 4) ; x \equiv z(\bmod 2)$ if $u_{3} \equiv 1(\bmod 4)$ and $v_{3} \equiv 2$ $(\bmod 4)$; and $x \equiv 0(\bmod 2)$ if $u_{3} \equiv 3(\bmod 4)$.
Hence $Z_{c_{3}}\left(4 \mathcal{O}_{K}\right)$ is the set of elements $\alpha=x \eta_{1}+y \eta_{2}+z \eta_{3}+w \eta_{4}$ satisfying

$$
\begin{aligned}
& \left\{\begin{array}{l}
y \equiv z \equiv 0 \quad(\bmod 2) \\
w \equiv 0 \quad(\bmod 4)
\end{array}\right\} \quad \text { if } u_{3} \equiv 1 \quad(\bmod 4) \text { and } v_{3} \equiv 0 \quad(\bmod 4) \\
& \left\{\begin{array}{lc}
x \equiv z & (\bmod 2) \\
y \equiv 0 & (\bmod 2) \\
w \equiv 2 z & (\bmod 4)
\end{array}\right\} \quad \text { if } u_{3} \equiv 1 \quad(\bmod 4) \text { and } v_{3} \equiv 2 \quad(\bmod 4) \\
& \left\{\begin{array}{l}
x \equiv y \equiv 0 \quad(\bmod 2) \\
w \equiv 2 z \quad(\bmod 4)
\end{array}\right\} \quad \text { if } u_{3} \equiv 3 \quad(\bmod 4)
\end{aligned}
$$

and we have that $\left[Z_{c_{3}}\left(4 \mathcal{O}_{K}\right): 4 \mathcal{O}_{K}\right]=16$ and $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{3}}\right|=$ 4 in any cases. Also we have $\left|\widehat{H}^{0}\left(G, \mathcal{O}_{K}\right)_{c_{3}}\right| \neq\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c_{3}}\right|$ if $u_{3} \equiv 3(\bmod 4)$ or if $u_{3} \equiv 1, v_{3} \equiv 2(\bmod 4)$.

REmark 7.2. It is easy to see that $\left|H^{1}\left(G, \mathcal{O}_{K}\right)\right|=\left|\widehat{H}^{1}\left(G, \mathcal{O}_{K}\right)\right|=2$ or 4 for Type II or Type III, respectively. As a summary, we have $\left|H^{1}\left(G, \mathcal{O}_{K}\right)_{c}\right| \neq\left|\widehat{H}^{1}\left(G, \mathcal{O}_{K}\right)_{c}\right|$ in Type III, when
(a) $c=c_{1}$ and $v_{1}$ is odd
(b) $c=c_{i}$ and $u_{i} \equiv 3(\bmod 4)$, for $i=2,3$
(c) $c=c_{i}, u_{i} \equiv 1(\bmod 4)$, and $v_{i} \equiv 2(\bmod 4)$, for $i=2,3$.

## References

[1] A. Babakhanian, Cohomological Methods in Group Theory, Marcel Dekker, INC., New York, 1972.
[2] E.K. Lee, On Certain Cohomological Invariants of Algebraic Number Fieds, Dissertation, Johns Hopkins University, 2005.
[3] M.P. Lee and M.L. Madan, On the Galois cohomology of the ring of integers in an algebraic number field, Proc. Amer. Soc. 20 (1969), issue 2, 405-408.
[4] S.M. Lee and T. Ono, On a certain invariant for real quadratic fields, Proc. Japan Acad. Ser. A 79 (2003), no. 8, 119-122.
[5] T. Ono, A Note on Poincaré sums for finite groups, Proc. Japan Acad. Ser. A 79 (2003), no. 4, 95-97.
[6] T. Ono, On Poincaré sums for local fields, Proc. Japan Acad. Ser. A 79 (2003), no. $7,115-118$.
[7] T. Ono, On Poincaré sums for number fields, Proc. Japan Acad. Ser. A 81 (2005), no. 4, 65-68.
[8] E. Weiss, Algebraic Number Theory, McGraw-Hill, New York, 1963.
[9] H. Yokoi, On the ring of integers in an algebraic number field as a representation module of Galois group, Nagoya Math. J. 16 (1960), 83-90.
10] H. Yokoi, On the Galois cohomology group of the ring of integers in an algebraic number field, Acta Arith. 8 (1963), 243-250.
[11] H. Yokoi, A Note on the Galois cohomology group of the ring of integers in an algebraic number field, Proc. Japan Acad. Ser. A 40 (1964), no.4, 245-246.

## *

Department of Liberal Arts
College of Engineering
Hongik University
Seoul 04066, Republic of Korea
E-mail: sherwood@hongik.ac.kr

