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MODULES OVER THE GENERALIZED CENTROID OF
SEMI-PRIME GAMMA RINGS

MEHMET ALl OzZTURK AND HASRET YAZARLI

ABSTRACT. The aim of this paper is to introduce modules over the gen-
eralized centroid of a semi-prime I'-ring

1. Introduction

Nobusawa studied on I'-ring for the first time in [3]. After his research,
Barnes studied on this I'-ring in [1]. But Barnes approached to I'-ring in some
different way from that of Nobusawa and he defined the concept of I'-ring and
related definitions. After these two papers were published, many mathemati-
cians made good works on I'-ring in the sense of Barnes and Nobusawa, which
are parallel to the results in the ring theory. The concept of “centroid of a
prime I-ring ” was defined and investigated in [4] and [6] by Oztiirk and Jun.
Furthermore it was shown in [5] and [6] that the extended centroid is a I'-field
and the generalized centroid of a semi-prime I'-ring is regular I'-ring respec-
tively by Oztiirk and Jun. The aim of this paper is to introduce modules over
the generalized centroid of semi-prime I'-ring.

2. Preliminaries

The gamma ring is defined in [3] as follows: A T'-ring is a pair (M, I") where
M and T are (additive) abelian groups for which exists a (., .,.) : MaT'aM — M
(the image of (a, a, b) being denoted by aab for a,b € M and « € T') satisfying
for all a,b,c € M and o, 3 € T":

a+b) ac = aac + bac

)
)
(i) aa(b+ ¢) = aab + aac
) (aab) Be = aa (bBc).
Let M be a I'-ring. A right (resp. left) ideal of M is an additive subgroup

U such that UTM C U (resp. MT'U C U). If U is both a right and left ideal,
then we say that U is an ideal. For each a € M, the smallest right (resp. left)
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ideal containing a is called the principal right (resp. left) ideal generated by a
and is denoted by |a) (resp. {(a|). Also, we (a) denotes the principal two-side
(right and left) ideal generated by a. An ideal Q) of M is semi-prime if, for any
ideal U of M, UT'U C @ implies U C Q. A I'-ring M is said to be semi-prime
if the zero ideal is semi-prime.

Remark 1. A T-ring M is semi-prime if and only if all of its non-zero ideals
have a non-zero multiplication, i.e., for an ideal U the equality UTU = (0)
implies U = (0).

Theorem 1 ({2, Theorem 1|). IfQ is an ideal of a T-ring M, then the following
conditions are equivalent.

(i) @ is a semi-prime ideal.
(ii) If @ € M such that al’' MT'a C Q, then a € Q.
(iii) If (a) is a principal ideal in M such that (a) T (a) C @, then a € Q.
(iv) If U is a right ideal in M such that UTU C Q, then U C Q.
(v) If U is a left ideal in M such that VI'V C @, then V C Q.

Lemma 1 ([2, Theorem 4]). A I'-ring M is semi-prime if and only if al' MTa =
(0) implies a = 0.

Let M be a I'-ring. For a subset U of M, Ann;U = {a € M| aT'U = (0)}
is called the left annihilator of /. A right annihilator Ann,U can be defined
similarly. An ideal of M is said to be essential if it has non-zero intersection
with any non-zero ideal of M.

Let M be a semi-prime I'-ring. We denote F' a set of all ideals of M which
have zero annihilator in M.

Lemma 2 ([6, Lemma 3.2]). Let M be a semi-prime I'-ring and U a non-zero
tdeal of M. Then U € F if and only if U is essential.

Let M be a semi-prime I'-ring such that MT'M # M. Denote
M:={(U, )| f: U — Mis a right M-module homomorphism for allU € F}.

Denote a relation “~” on M by (U, f) ~ (V,g) & IW C U NV such that
f=gon W € F. Since the set F is closed under multiplication, it is possible
to find such an ideal W € F and so “~” is an equivalence relation. This gives
a chance for us to get a partition of M. We denote the equivalence class by
CL(U,f) = f, where f := {g:V — M|(U,f)~(V,g)} and denote by Q.
the set of all equivalence classes. We define an addition “+” on Q. as follows:

f+g=ClU f)+Cl(V,g)= CIUNV, f+g),

where f+¢g: UNV — M is a right M-module homomorphism. (@, +) is an
abelian group. Since MT'M # M and M is a semi-prime I'-ring, MT'M( # 0)
is an ideal of M and so is MBM for every 8( # 0) € . 0 # MBMI'U C
MpBM NU where U is a non-zero ideal of M. Therefore M3M is essential and
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so MBM € F for every (8 # 0) € I' by Lemma 2. We can take the homomor-
phism 1y : MBM — M defined by 1p( mifSme ) = mifBma as non-zero
M-module homomorphism. Denote N := {( M38M,1p3 ){0# B €T} and
define a relation, “x~” on N by (MGM,1ps) = (MyYM,1my) <= IW =
MaM (e F) C MBM N M~vM such that 1p3 = 1y on W € F. “xX” is an
equivalence relation on A/ . Denote by CI( MBM,1pp ) = B, the equivalence
class containing (MBM, 153) and by T the set of all equivalence classes of N/

with respect to “~”, that is, T = {Bl 0+£p¢€ I‘}. Define an addition “+” on

T as follows:

B+75 = CUMBM,1ps) + ClM~M, 15,
= ClL(MBM N M~M, s+ 1ay)

for every 5 (# 0),v(# 0) € T". Then, ( T, + ) is an abelian group. Now we
define a mapping (.,.,.) : Q,2I'zQ, — Q,, ( f,5,9 ) — B9 as follows:

fB3 = CIU,f).ClUMBM,1yp).CL(V,g)
= (l (VFM,@MFU,flMgg)

where VIIMBMTIU € F and flypg: VIMBMI'U — M, which is given by
(f1mpg) (Z Ui'}’imiﬁniaiui) =f (Z g( vi )’Y@miﬁniaéui)

is a right M-module homomorphism. Notice that the mapping ¢ : I' — T
defined by ¢( 8 ) = E for every 0 #£ 3 € I'. The mapping ¢ is an isomorphism,
we know that the f-ring () is a I'-ring. For a fixed element a in M and every
element v in ', consider a mapping A, : M — M defined by Aoy ( z ) = aryz for
all z € M. The mapping A,~ is a right M-module homomorphism and so Aqy
is an element of Q),. Define a mapping ¥ : M — @, by ¥(a) = a=CIl(M, Aa~)
for all a € M and v € T'. The mapping ¥ is a right M-module injective
homomorphism and so M is a subring of @}, and in this case, we call ), the
right quotient I'-ring of M. One can, of course characterize (J;, the left quotient
I-ring of M in a similar manner. The ring @ is called a two-sided quotient
I-ring of M, if Q is both right and left quotient I'-ring of M, then (see [6]).
For purposes of convenience, we use ¢ instead of ¢ € Q).

Definition 1 ([6, Definition 3.4]). Let M be a semi-prime I'-ring and @), the
quotient ['-ring of M. Then the set

Cr:={9€Q.| gvf=fygforall feQ, and y €T}
is called the generalized centroid of M.

Theorem 2 ([6, Theorem 3.5]). Let M be a semi-prime I'-ring and @), the
quotient I'-ring of M. Then the I'-ring ), satisfies the following properties:
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(i) For any element q¢ € Q,, there exists an ideal U, € F which is an
essential tdeal with a right M -module homomorphism q : U — M, such
that q(U,) C M (or gyU, C M for all v € T).

(ii) If ¢ € Qr and q(Uy) = (0) for a certain U, € F (or gyU, = (0) for a
certain Uy € F and for all v € F), then ¢ = 0.

(iii) IfU € F and ¥ : U — M is a right M-module homomorphism, then
there exists an element q € Q. such that U{u) = q(u) for allu € U (or
U(u) =gyu for allu e U and v €T).

(iv) Let W be a submodule (an (M, M)-sub-bimodule) in Q, and ¥ : W —
Qr a right M -module homomorphism. If W contains the ideal U of the
I'-ring M such that ¥(U) C M and AnnU = Ann,W, then there is an
element q € Q, such that ¥(b) = q(b) for anyb € W (or ¥(b) = g7b for
any b e W and vy € T") and q(a) =0 for any a € Ann, W (or gya =0
for any a € Ann, W and v € T).

Definition 2 ([6, Definition 3.7]). A T-ring M is called regular if for any
element z € M, there exists an element z € M such that :cfﬁscfya: = x, where

v, B €T.

Theorem 3 ([6, Theorem 3.8]). Let M be a semi prime I'-ring and Cr the
generalized centroid of M. Then Cr is a reqular I'-ring.

In the set F of all idempotents of Cr, the relation < defined by ¢; < ey &
egve; = €1, ¥ € I' is a partial order.

Definition 3 ({6, Definition 3.10]). Let M be a semi-prime I'-ring, @, the
quotient I'-ring of M and let S C (.. The least of idempotent elements
e (S) = e € Cp such that eys = s for all s € §, v € T is called the support of
the set S.

Lemma 3 ([6, Lemma 3.11]). Let M be a semi-prime I'-ring, @), the quotient
L-ring of M and S C Q.. If S has a support e (S) = e € Cr, then the equality
gyMT'S = 0 for an element q € QQ (ST M~q = 0) is equivalent to qve (S) = 0.

Let A be module in I'-ring M. Let Il : A, — A; be an epimorphism where A;
and As are any modules in I'-ring M. If there exists a module homomorphism
¥ : A — Ay for module homomorphism ¢ : A; — A such that [TV = o, then
A is called projective module.

This property is equivalent to the fact that for any epimorphism 6 : A — A
there exists a decomposition A = Kerf @ A . The direct sum of modules is
projective if and only if all summands are projective.

Let A be module in I'-ring M. Let II : A; — As be a monomorphism,
where A1 and A; are any modules in I-ring M. If there exists a module
homomorphism ¥ : A, — A for module homomorphism ¢ : A; — A such that
WII = ¢, then A is called injective module.

This property is equivalent to fact that for any monomorphism 6 : A — A
there exists a decomposition A = Imf @ A . In this case A is extracted a
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direct summand of any module containing it. The direct product of modules
is injective if and only if all the cofactors are injective.

Let M be I'-ring. If M is injective over itself as (left) module, then I'-ring
M is called (left) self-injective. |

3. Main results

Definition 4. Let M be a semi-prime I'-ring and Ct be its generalized centroid.
(i) Let I be a directed partially ordered set, A be Cpr-module and a € A. If
there exists a direct set of idempotents {e; |i € I'} such that e; <e; for i < 3,
i, 7 €1, sup{e;} =1 and e;vya; = e;va, Vi € I,¥y € T, then a is called a limit
of the set {a; € A| i € I'}. Denote by li}:na,i = a.
(ii) Let T be subset of A. If g is limit of the set {a; € T| i € I} and a € T,
then set T is called closed.

Remark 2. (i) The closure of a set is the least closed set containing the given

one. Therefore, the operation of closure determines a certain topology on the
Cr-module A.

(ii) Let A; and A3 be modules on Cr and ¢ : A1 — As be a function. If
li}na,,; = a implies li}n(p (a;) = ¢ (a), then ¢ is called a quite continuous function.

Indeed, in this case preimage of closed set is closed and hence ¢ is a continuous
function. If ¢ preserves the operator of multiplication by the idempotents, i.e.,
¢ (ave) = p(a)ve, vy € T" and e € Cr, then ¢ is a quite continuous function.

Proposition 1. Let M be semi-prime U'-ring and @), be quotient I'-ring M.
If li}'nm- = r, li}ns,&- = s where 7,8,7;,8; € @, then li}n (r; 28;) =r=xs and

li}n (rias;) =ras for all a € T.

Proof. Let li}nri =r, li}nsi = 5. Let {e;vfi|i €I,y €T} be directed set of

idempotents for sets {r; & s; | r;, s; € Q,-} and {r;as; | r;, s; € Qr, ¢ € '}, where
{e;} and {f;} are directed sets of idempotents. If eve;3f; =0 for all v,3 € T,
then for an arbitrary j € I, k > i, 7, we get, for v, 3, a, o ,8 el

(eve:) Bf; = ey (esaer) B (fja’ek) = e (e;aek) O (fjﬁlfk) ae

= (eaekﬁ’ fk:) veiBf; = 0.
Since sup {f;} = 1, eve; = 0 and sup{e;} =1, e = 0. Further on,
(e fi) B(r+s) = (envfs) Br £ (eifi) Bs = fiBB (esyri) + ey (fiBsi)
= e;vfiB (ri £ 8;).
Consequently from Definition 4(i), we have li}n (r; &£ 8;) = r £ s. Accordingly,
e fiB (ras) = fiy(eiBr) as = fiy (eiBri) as = (eifri) v (fixs)
= (efBri) v (fiass) = ey fiB (riausi)
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ie., li}n (r;as;) = ras. O]

Definition 5. If submodule of A is a union of all the elements having essential
annihilators in the Cr, then this module is called a singular submodule of A.
And, a module is called non-singular if its singular submodule equals zero.

Theorem 4. The following conditions on the Cr-module A are equivalent:

(a) Any directed set of elements of the module A has not more than one
limit.

(b) Any one-element set is closed.

(¢) The zero submodule is closed.

(d) A is a non-singular module.

Proof. (a) = (b) Let a be an element of A and {a} be one-element set. The
set {a} is directed. Since e;ya; = e;ya, v € T, where {e;| i € I} is directed
set of idempotents and by the Definition (4), lima; = a. Since a € {a}, the set

el
{a} is closed.

(b) = (c¢) The submodule {04} is closed, since {04} is one-element set.

(c) = (d) Let us prove that closure of a zero submodule is same with the
singular ideal.

If U is an essential ideal in ring Cr, then e(U) = 1. Let U be an essential
and e (U) # 1, 1e., f =1—¢e(U) # 0. In this case, UNCrvf = (0),~ € T, since
Crvf # (0) is an ideal of Cr and U is an essential ideal. If U N Cr~vyf # (0),
then there exists a ¢ € U N Cryf such that x € U and € Crvyf. Hence
z=cyf,c€Cr. x=cyf =cy(l —e(U)) =c— cye(U). Left multiplying by

e, we have
efzr = effc — eB (cye (U)) = efBc — (efc) ye

= effc — (eve) Bc = efc — effc =0,

i.e., e = 0. This is a contradiction, since e # 0. Thus U N Cryf = (0) and
consequently f = 0. In this case our acceptance is wrong, i.e., e (U) = 1.
Inversely, if e (U) =1 and U NV = (0), then choosing an arbitrary element f
inV, we get fAU CUNV =(0), i.e., f =e(U)f =0 and hence V = (0). Thus
U is an essential ideal.

Let a € Z (A) which is center of A. In this case Annc.. (a) is an essential
ideal. Let J be a set of all idempotents of this ideal. It is a directed set.

In this case, taa = 100, for all © € J and a € T, so that l_in}az- = a, where
(45

a; = 0. Consequently, Z(A) C (0). Let us now show that Z (A) is closed

submodule. Let l_ien}ai = a, where a; € Z(A) and let a ¢ Z(A). Let f =

1 — (Anncy (a)) # 0. supe; = 1 from definition of limit for set of idempotents
ieJ

{e;] i € J}. There is an element j € J, such that fye; # 0, v € I'. Since

a; € Z(A) then sup (Annc. {(a;)) = 1 and there exists an idempotent u; €

Anncy (a;) such that u;5fye; # 0. Therefore u;8fvejaa = u;B8fve;aa; =

fryeja (ujfa;) = 0. It means that u;8fye; € Anncy {a;). Since idempotent f
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annihilates Anncy. (a;), fa(u;B8fve;) = uw;B(faf)ve; = u;Bfye; = 0. This is
a contradiction. Thus a € Z (A).

(d) = (a) Let us assume that a certain directed set of idempotents {a;} has
two limits, al!) # a{?). Let sets of idempotents {e;}, {f;}. In this case

(e:f:)(a® — o)
= (e:Bfi)raV — (eBfi)ya® = fiB8(eryaV) — eiB(fiva'®)
= fiB(eivai) — eB(fiva:) = 0.
Since sup {e;7f;} = 1 from Proposition 1, a®—a® =0, ie., aV =a®. Thus
set {a@-|% i € I} has one limit. O

Remark 3. Let @ be I'-ring and F (Q,T") be set of endomorphism of additive
group of . It can be easily show that E (Q,T') is a I'-ring. The center of () is
right module over Cr.

Theorem 5. The modules Q, and E(Q,,T') are non-singular.

Proof. Let us make use of condition (a) of Theorem 4. Let r,s be the limits
of set {r;| ¢ € I} and let {e;} and {f;} be sets of idempotents for limits 7, s,
respectively. In this case, ;3 (fiyr) = fi8 (eiyri) = eiB (fiyri) = e (firys).
Thus (e;Bf;)y(r—s) =0. If r,s € Q,, then r — s = sup{e;Bfi}y(r—s) =
0, ie, r = s. If r,s € E(Q,,I'), then for any x € ()., the equalities
eiBfiy(r—s)(x) =0 yield r () = s (). The theorem is proved. O

Theorem 6. If T is a subring of Q),, then its closure T is also a subring.

Proof. Let us denote by &k (T') a set of all the limiting points of T'. Let 7 is a

limit pOiIlt and T1 — T, T,,;+1 =k (Ti), Tj — gT?’
t>7

In this case the union of all T; is a closed set and it equals T. Therefore,
according to the transfinite induction, it suffices to prove that & (T') is a subring.
Let li}nn =, li§nsj = s for r;,s; € T and {e;}, {e;} be sets of idempotents for
these limits respectively. Let us consider the set {e;ve;| (¢,7) € IzJ,v € T'}.
Let us assume that (i,7) < (i1,51) © i < 11,5 < J1. |

In this case, we get %_m} (r; £s;) =r=*s, %1%1 (riys;) = rys € k(T). Thus

xT xT
k (T) is a subring. O

Theorem 7. Let U be an ideal of the subring T C Q). Then the closure U is
an ideal of T.

Proof. Similar in the Theorem 6, it suffices to prove that k£ (U) is an ideal of
k(T). Let li}n'rz- =, li?sj = sforr; € T,s; € U and {e;},{e;} be sets of
idempotents for these limits respectively. Let us consider the set

{eive;| (i,75) € Ixd,y€T}.
Let us assume that (¢,7) < (i1,71) 1 <i1,7 < J1.
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In this case, we get hm (ritsj)=rxseck(U), %111} (rivs;) =rys € k(U)
and syr € k (U), i.e. k(U) is an ideal of k (T). O

Definition 6. Let A be a Cr-module and {a;| ¢ € I} be any set of elements
of A. The module A is called complete if set {a;| ¢ € I}, for which there exists
a directed set of idempotents {e;}, such that sup{e;} = 1 and at ¢« > j the
relations e;va; = e;va;, v €I', e; > e; are valid, has a limit.

Theorem 8. The modules Q, and E (Q.,I') are complete.

Proof. Let us assume that r; € Q. and {e;} be a set of idempotents such that
e;yri = €;Yr;, €; > e; at 1 > j and sup {e;} = 1. Let

Ni={ze M| eyvx e M, e;ar;fzx € M, v,a,3 €T}.
Then N; is a right ideal of the M. Indeed, e;vz, e;ar;8x € M and e;vy,

eiar;By € M for all z,y € N;. In this case e;yx — e;yy = ev(x —y) €
M and e;ar;fx — e;ar;By = e;ar;B(x—y) € M, ie, z—y € N;. I eivzx

and e;ar;Bx € M, for all x € N;, then (e;vx) am = ey (a:a’m) € M and

(e;or; Bx) am = e;ar; 3 (:ca’m), for all m € M, i.e., za.m € N;. Thus N; is
a right ideal of M.

Since r; : U — M, x — r; () = ryyx, v € T is a right M-module homomor-
phism. Hence e;vyx and e;ar;3xz € M. Thus there exists an U; € F (M) such
that U; C N;. The union N = Ue;vN;, v € I is also a right ideal. Indeed, if

e;va;, €;ya; € N and let us find an element k > i, j, then

exary (e;ya; + e;jya;)
= exarifeiva; + exaryfe;va;
= erfPe;aryya; + exfejaryya;
= e;arya; + ejaryya; = e;aryya; + e;ar;ya; € M.

Analogously, exa (e;ya;: + ejva,) = exae;ya; + epae;va; = e;va; +ejya; € M.

Thus e;va; +ejya; € exyNg. Since exary 3 (e;va;) a’m:ekark,@ew (aia’m) =

€; QT LY (a@-a’m) = e; a7y (aia’m) € M for any m € M, (e;ya;) a'm € exyNg.

In this case N is an ideal. As exyNp 2 e;vU;, then N D > e~vU; = U is an
ideal of M. Besides, the annihilator of U equals zero. Indeed, if x8U = 0,
B €T, then zfe;vU; =0, i.e., xBe; = 0, since U; is an essential ideal and hence
x = 0, since sup {e;} = 1. Let us consider mapping £ : N — M defined by
¢ (eiya;) = rifBe;ya;. The mapping £ is a right M-module homomorphism. If
e;iya; = ejya; and k > 4,7 then r;fBe;va; = ryfe;ya; = rrfBejya; = riBe;va;,
i.e., £ is well-defined. Since £ € @), then from Theorem 2 there is an element
r € Q, such that rBe;va; = r;Be;va;- In this case (rBe; — r;Be;) va; = 0, ie.,
(rBe; —riBe;) yU; = 0. Therefore rBe; — r;Be; = 0, since U; is an essential
ideal. Thus rB3e; = r;8¢e;. Hence li}nm- =r.
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If r; € E(Q,T), then for any z € @), there exists a limit of r; (x) and we can
set 7 (z) = r; (z). In this case r = li}m‘i. The theorem is proved. O

Theorem 9. The subrings ) and Cr are closed in (). Hence they are complete
modules over Cp.

Proof. Letr = li}’nn, r; € Q. From Theorem 2 there exists an U; € F' such that

U;,Briae; C M, Uyae; C M. Then V = > Usae; € F, in which case U;ae; Br =
U;ae;Br; and hence ryV C M, ie., r € . Therefore ¢ is closed. The
submodule Cr is closed as an intersection of all the kernels of quite continuous
mappings ad a : x — avyr — xzva, v € I'. Indeed, let r; € Cr and h}m‘i =r,

ad a(r) = li}nad a (r;), since e;8 (ad a (1)) = e;8 (ayr — rya) = e;8 (ad a(r;)).

The theorem is proved. | O

Theorem 10. Any complete non-singular module over Cr s injective and
vice versa, any injective module over Cr is complete.

Proof. Let T be a complete non-singular submodule of A. Let us show that T
is extracted from A by a direct summand.

Let us consider a set of all submodules having zero intersection with 7' in
A. This set is directed by inclusion relation. In this case, according Zorn
Lemma, this set has at least one maximal element A'. Let us show that A  is
closed submodule in A. Let li}na?; —a,a; € A and let {e;] i € I} be set of

idempotents. If a ¢ A then (Af + Cpfya,) NT # (0). Let t = a + cya # 0,

v €T for a € A and ¢ € Cr. Foranyt € I, e;at = e;aa + e;cya € ANT
and A NT = (0), i.e., due to non—-singularity of the module T the element ¢ is
equal zero. This is a contradlctlon ae A

Let a be an arbltrary element of A. Let us show that a € A + T. Let us
assume that @ € A'. Let us consider a set I of idempotents ¢ € Cr, such that
iva € A’+T, ~ € I'. This set is directed and if i1,i5 € I, then = t1+i2—%3i2 €
such that (i1 Vis)a = t1a + (1 — 41) i2a.

Let us show that sup/ = 1. Let, on the contrary, f =1 —supl # 0. If
fel, then f2=f. f(1—f)= f.supl] =0. If fsupl =0, then f = 0.
This is a contradiction. It must be f ¢ I. Thus fvya ¢ A"+ T and since

frya ¢ A, (A’ + Craf'ya,) NT # (0). Let 0 # a + cafya €T, for ¢ € Cr and

a € A'. In this case 0 # caf~va is element of A + T. Since Cr is regular ring,
there exists an element ¢ such that e; = ¢ fc is an idempotent and ca e; = c.

Therefore elﬁff # 0. On the other hand since elﬁff'ya, = (c'ﬂc) ﬁfffya, in
A +T, e 3f € I. However Iy f = Iy (1 —sup 1) =T—Iysupl=1—-1=0

! ’ 2 / ’ f ! ’ .
and so that e1 3 f = (elﬁ f) = (61,8 f)fy (81,8 f) = (61,8 f)'y f =20. This

is a contradiction. It must besup I = 1. Let iva = a;+1t; where a; € A’, t; eT.
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If j < i, then jBa = jB(iva) = jBa; + jBt. As the sum A + T, is direct,
a; = jPai, t; = jBt;. Since the module T is complete, there exists a limit

l_in}lt@— = t. Since iya = a; +1t;, iva—t; = a; € A Sincesupl =1,a—t = li}na,z-
tc

and A" ie,ac A +T.

Inversely, let A be injective Cr-module. Crab = Cr where Crab is a free
one-generated module. Indeed, the mapping ¢ : Cr — Crab, x — zab is
an isomorphism. If x = y, then zab = yab, ic., p(z) = p(y). p(@+y) =
(z+y)ab = zab+yab = ¢ (x) + p(y). @ (@8c) = (zfc)ab = (zab) fe =
¢ (x) Be, i.e., ¢ is a module homomorphism. If zay = yab, then (x — y) ab = 0.
Since Cr is aregular ring, t—y = 0, i.e., x = y. There exists an element « in Cr
such that ¢ (x) = zab for all zab € Crab. Thus ¢ is a bijection. Let us consider
direct sum A; = A® Crab. Let {a;} be set of elements of A and {e;} be directed
set of idempotents such that sup{e;} = 1 and e;8a; = e;Ba; for j > 1, for all
B €T. In A, let us consider a submodule IV by the elements e;vya;®e;vb. We get
NNA=(0).Indeed, if a =" (¢;Beiva; ® c;Be;vb) € A, then (}:ci,@e@-) ~b =

0. Due to regularity of the Cr, ) ¢;0e; = 0. Let 7 be the upper boundary of

elements 7 included in the latter sum. Since 0 = (Zc%ﬂe@-) va; = Y cifeiya; =

1

> ciBeiva;, a = 0. Thus the natural homomorphism ¢ : A — A;/N is an

embedding. We can write the relations, e;yyp (a;) + €;¥b = 0, for all ¢. Indeed,
@ (e;va;) = e;vp (a;) € A1/N. Therefore e;vp (a;) = a1 + N, a; € A;. Since
€YY ((L@) =e;va; D e yb+ N, ey (CE@) + e;vb = 0.

Let us apply the definition of injectivity: There exists a homomorphism
¥ : A;/N — A such that ¢¥ = 1. Let a = —¥ (). Thus

0=V (e;vp (a;) + eivh) = e;vV (¢ (a;)) + ey¥ (b) = e;va; — e5va,

i.e., e;ya; —e;ya = 0. Therefore e;va; = e;va, i.e., 1i}nai = a. (]

Corollary 1. A generalized centroid of a semi-prime U-ring is a regular self-
injective I'-ring.

Remark 4. Any semi-prime, self-injective, commutative I'-ring M is same with
its generalized centroid. Let () be a Martindale I'-ring of quotients. Let us
consider () as a right M-module. Since M C (Q, we can write direct decompo-
sition ) = M @ A. If a € A, then, by the definition of a ring of quotients, there
is an ideal U € F, such that ayU C M, v € I". On the other hand, ayU = (0).
Since U is an essential, a = 0 and hence, A = (0). Thus M = Q.

Theorem 11. Let E be set of all idempotents in Cr and Q (E) the quotient
C-ring of E. Then Q(E) = E.

Proof. Let U be essential ideal of E. Therefore supU = 1 and if ¢yU C FE, then
q € Q(EF). Let us assume that e, = ¢yu and U be directed set of idempotents.
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Since Cr is complete, there is limit e = lime,. Since e is an idempotent and

U
(e—q)yu =€y —qyu =0, (e — q)yU = (0) and since U is an essential ideal,
e —q=0. Hence, e = ¢ € E. In this case Q (F) = E. [
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