• 제목/요약/키워드: modulation recognition

Search Result 94, Processing Time 0.022 seconds

Study on Fast-Changing Mixed-Modulation Recognition Based on Neural Network Algorithms

  • Jing, Qingfeng;Wang, Huaxia;Yang, Liming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4664-4681
    • /
    • 2020
  • Modulation recognition (MR) plays a key role in cognitive radar, cognitive radio, and some other civilian and military fields. While existing methods can identify the signal modulation type by extracting the signal characteristics, the quality of feature extraction has a serious impact on the recognition results. In this paper, an end-to-end MR method based on long short-term memory (LSTM) and the gated recurrent unit (GRU) is put forward, which can directly predict the modulation type from a sampled signal. Additionally, the sliding window method is applied to fast-changing mixed-modulation signals for which the signal modulation type changes over time. The recognition accuracy on training datasets in different SNR ranges and the proportion of each modulation method in misclassified samples are analyzed, and it is found to be reasonable to select the evenly-distributed and full range of SNR data as the training data. With the improvement of the SNR, the recognition accuracy increases rapidly. When the length of the training dataset increases, the neural network recognition effect is better. The loss function value of the neural network decreases with the increase of the training dataset length, and then tends to be stable. Moreover, when the fast-changing period is less than 20ms, the error rate is as high as 50%. As the fast-changing period is increased to 30ms, the error rates of the GRU and LSTM neural networks are less than 5%.

A Novel Self-Learning Filters for Automatic Modulation Classification Based on Deep Residual Shrinking Networks

  • Ming Li;Xiaolin Zhang;Rongchen Sun;Zengmao Chen;Chenghao Liu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1743-1758
    • /
    • 2023
  • Automatic modulation classification is a critical algorithm for non-cooperative communication systems. This paper addresses the challenging problem of closed-set and open-set signal modulation classification in complex channels. We propose a novel approach that incorporates a self-learning filter and center-loss in Deep Residual Shrinking Networks (DRSN) for closed-set modulation classification, and the Opendistance method for open-set modulation classification. Our approach achieves better performance than existing methods in both closed-set and open-set recognition. In closed-set recognition, the self-learning filter and center-loss combination improves recognition performance, with a maximum accuracy of over 92.18%. In open-set recognition, the use of a self-learning filter and center-loss provide an effective feature vector for open-set recognition, and the Opendistance method outperforms SoftMax and OpenMax in F1 scores and mean average accuracy under high openness. Overall, our proposed approach demonstrates promising results for automatic modulation classification, providing better performance in non-cooperative communication systems.

Modulation Recognition of MIMO Systems Based on Dimensional Interactive Lightweight Network

  • Aer, Sileng;Zhang, Xiaolin;Wang, Zhenduo;Wang, Kailin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.10
    • /
    • pp.3458-3478
    • /
    • 2022
  • Automatic modulation recognition is the core algorithm in the field of modulation classification in communication systems. Our investigations show that deep learning (DL) based modulation recognition techniques have achieved effective progress for multiple-input multiple-output (MIMO) systems. However, network complexity is always an additional burden for high-accuracy classifications, which makes it impractical. Therefore, in this paper, we propose a low-complexity dimensional interactive lightweight network (DilNet) for MIMO systems. Specifically, the signals received by different antennas are cooperatively input into the network, and the network calculation amount is reduced through the depth-wise separable convolution. A two-dimensional interactive attention (TDIA) module is designed to extract interactive information of different dimensions, and improve the effectiveness of the cooperation features. In addition, the TDIA module ensures low complexity through compressing the convolution dimension, and the computational burden after inserting TDIA is also acceptable. Finally, the network is trained with a penalized statistical entropy loss function. Simulation results show that compared to existing modulation recognition methods, the proposed DilNet dramatically reduces the model complexity. The dimensional interactive lightweight network trained by penalized statistical entropy also performs better for recognition accuracy in MIMO systems.

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

On-Line Blind Channel Normalization for Noise-Robust Speech Recognition

  • Jung, Ho-Young
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.143-151
    • /
    • 2012
  • A new data-driven method for the design of a blind modulation frequency filter that suppresses the slow-varying noise components is proposed. The proposed method is based on the temporal local decorrelation of the feature vector sequence, and is done on an utterance-by-utterance basis. Although the conventional modulation frequency filtering approaches the same form regardless of the task and environment conditions, the proposed method can provide an adaptive modulation frequency filter that outperforms conventional methods for each utterance. In addition, the method ultimately performs channel normalization in a feature domain with applications to log-spectral parameters. The performance was evaluated by speaker-independent isolated-word recognition experiments under additive noise environments. The proposed method achieved outstanding improvement for speech recognition in environments with significant noise and was also effective in a range of feature representations.

  • PDF

Change of Recognition Range According to Modulation Index of the 13.56MHz RFID Type B System (13.56MHz RFID Type B 시스템에서 변조지수에 따른 인식거리의 변화)

  • Kim, Yong-Hee;Yang, Woon-Geun;Yoo, Hong-Jun
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.119-122
    • /
    • 2005
  • In this paper, we investigated the recognition range according to modulation index for the ISO(International Standards Organization) 14443 13.56MHz contactless Type B RFID(Radio Frequency IDentification) system. We measured recognition range with changing modulation index step by step from 5% to 24% where we used 4 samples of Type B transponder with different resonance frequencies between 13.838MHz and 17.200MHz. While gradually increasing a distance in vertical direction from the center of the reader antenna, we measured the distance where the transponder's PUPI(Pseudo Unique PICC(Proximity IC Card) Identifier) is recognized continuously during 10 seconds and the distance where the transponder's PUPI is recognized at least two times during 5 seconds. From the measurement results, we found that the best recognition ranges were achieved when the reader had modulation index between 11% and 14%.

  • PDF

Modulation Recognition of BPSK/QPSK Signals based on Features in the Graph Domain

  • Yang, Li;Hu, Guobing;Xu, Xiaoyang;Zhao, Pinjiao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3761-3779
    • /
    • 2022
  • The performance of existing recognition algorithms for binary phase shift keying (BPSK) and quadrature phase shift keying (QPSK) signals degrade under conditions of low signal-to-noise ratios (SNR). Hence, a novel recognition algorithm based on features in the graph domain is proposed in this study. First, the power spectrum of the squared candidate signal is truncated by a rectangular window. Thereafter, the graph representation of the truncated spectrum is obtained via normalization, quantization, and edge construction. Based on the analysis of the connectivity difference of the graphs under different hypotheses, the sum of degree (SD) of the graphs is utilized as a discriminate feature to classify BPSK and QPSK signals. Moreover, we prove that the SD is a Schur-concave function with respect to the probability vector of the vertices (PVV). Extensive simulations confirm the effectiveness of the proposed algorithm, and its superiority to the listed model-driven-based (MDB) algorithms in terms of recognition performance under low SNRs and computational complexity. As it is confirmed that the proposed method reduces the computational complexity of existing graph-based algorithms, it can be applied in modulation recognition of radar or communication signals in real-time processing, and does not require any prior knowledge about the training sets, channel coefficients, or noise power.

Automatic Recognition Algorithm for Linearly Modulated Signals Under Non-coherent Asynchronous Condition (넌코히어런트 비동기하에서의 선형 변조신호 자동인식 알고리즘)

  • Sim, Kyuhong;Yoon, Wonsik
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2409-2416
    • /
    • 2014
  • In this paper, an automatic recognition algorithm for linearly modulated signals like PSK, QAM under noncoherent asynchronous condition is proposed. Frequency, phase, and amplitude characteristics of digitally modulated signals are changed periodically. By using this characteristics, cyclic moments and higher order cumulants based features are utilized for the modulation recognition. Hierarchial decision tree method is used for high speed signal processing and totally 4 feature extraction parameters are used for modulation recognition. In the condition where the symbol number is 4,096, the recognition accuracy of the proposed algorithm is more than 95% at SNR 15dB. Also the proposed algorithm is effective to classify the signal which has carrier frequency and phase offset.

Automatic Recognition of Analog and Digital Modulation Signals (아날로그 및 디지털 변조 신호의 자동 인식)

  • Seo Seunghan;Yoon Yeojong;Jin Younghwan;Seo Yongju;Lim Sunmin;Ahn Jaemin;Eun Chang-Soo;Jang Won;Nah Sunphil
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.1C
    • /
    • pp.73-81
    • /
    • 2005
  • We propose an automatic modulation recognition scheme which extracts pre-defined key features from the received signal and then applies equal gain combining method to determine the used modulation. Moreover, we compare and analyze the performance of the proposed algorithm with that of decision-theoretic algorithm. Our scheme extracts five pre-defined key features from each data segment, a data unit for the key feature extraction, which are then averaged over all the segments to recognize the modulation according to the decision procedure. We check the performance of the proposed algorithm through computer simulations for analog modulations such as AM, FM, SSB and for digital modulations such as FSK2, FSK4, PSK2, and PSK4, by measuring recognition success rate varying SNR and data collection time. The result shows that the performance of the proposed scheme is comparable to that of the decision-theoretic algorithm with less complexity.

Online Blind Channel Normalization Using BPF-Based Modulation Frequency Filtering

  • Lee, Yun-Kyung;Jung, Ho-Young;Park, Jeon Gue
    • ETRI Journal
    • /
    • v.38 no.6
    • /
    • pp.1190-1196
    • /
    • 2016
  • We propose a new bandpass filter (BPF)-based online channel normalization method to dynamically suppress channel distortion when the speech and channel noise components are unknown. In this method, an adaptive modulation frequency filter is used to perform channel normalization, whereas conventional modulation filtering methods apply the same filter form to each utterance. In this paper, we only normalize the two mel frequency cepstral coefficients (C0 and C1) with large dynamic ranges; the computational complexity is thus decreased, and channel normalization accuracy is improved. Additionally, to update the filter weights dynamically, we normalize the learning rates using the dimensional power of each frame. Our speech recognition experiments using the proposed BPF-based blind channel normalization method show that this approach effectively removes channel distortion and results in only a minor decline in accuracy when online channel normalization processing is used instead of batch processing