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Abstract 

 
Automatic modulation classification is a critical algorithm for non-cooperative 
communication systems. This paper addresses the challenging problem of closed-set and open-
set signal modulation classification in complex channels. We propose a novel approach that 
incorporates a self-learning filter and center-loss in Deep Residual Shrinking Networks 
(DRSN) for closed-set modulation classification, and the Opendistance method for open-set 
modulation classification. Our approach achieves better performance than existing methods in 
both closed-set and open-set recognition. In closed-set recognition, the self-learning filter and 
center-loss combination improves recognition performance, with a maximum accuracy of over 
92.18%. In open-set recognition, the use of a self-learning filter and center-loss provide an 
effective feature vector for open-set recognition, and the Opendistance method outperforms 
SoftMax and OpenMax in F1 scores and mean average accuracy under high openness. Overall, 
our proposed approach demonstrates promising results for automatic modulation classification, 
providing better performance in non-cooperative communication systems. 
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1. Introduction 

Automatic Modulation Classification (AMC) is an essential part of cognitive radio in non-
cooperative communication systems. It is also necessary for the estimation of the modulated 
signal parameters , the correct demodulation and reception[1-5]. Therefore, it has been a hot 
topic of research to make the technology have a better recognition result. 

Two general categories of algorithms can be used to solve AMC problems: likelihood-based 
(LB)[6-12] and feature-based (FB)[13-22]. LB algorithms are derived from three the 
likelihood ratio tests: average likelihood, generalized likelihood, and hybrid ratio test 
likelihood. Due to the high computational complexity of the LB-based algorithm and the 
requirement for relatively complete prior information, it is difficult to achieve in non-
cooperative communication.  

The FB algorithm was often chosen in the past. The FB-based algorithms which usually 
base on the following features: moments, cyclostationary , high-order cumulants , and time-
frequency distribution. There are also many interesting studies on classifiers, such as decision 
trees[18], support vector machine (SVM)[19][20], k-nearest neighbor (KNN)[23], and hidden 
Markov models [24]. For feature selection, many papers have also described a lot of methods 
in this field, such as particle swarm optimization and genetic algorithm[25]. 
  In recent research, neural networks have been widely used in AMC technology and obtained 
better recognition results[26]-[31]. Despite the wide use of neural networks in AMC to achieve 
better recognition results, it has been found that simply using deep learning without proper 
data preprocessing cannot lead to further improvements in the recognition rate. To address this 
issue, a data preprocessing method is proposed in the letter[32] to enhance the receptive field 
of the CNN network and improve recognition accuracy. Additionally, a learnable distortion 
correction module is introduced in the letter[33] to eliminate carrier frequency and phase 
offsets, while the paper[34] converts the signal into an image and uses a neural network for 
recognition. 

But in actual noncooperative communication, noncooperative parties often add new 
modulation methods to the existing communication protocol. This brings new challenges to 
AMC technology, so this article will classify unknown signals through open-set recognition. 
In general, the set of signals in closed-set identification is all known, while the open-set signals 
are partly unknown. There are also some studies in the field of computer vision to solve the 
problem of unknown target identification. But so far, little research on this problem has been 
carried out in the field of modulation recognition. In paper[35] the probability of the unknown 
class is estimated using the deep learning and OpenMAX method for open-set data. For 
automatic modulation classification, the transmitter usually increases or decreases the 
modulation method as the communication protocol changes. However, for the receiver using 
existing networks or other methods only signals with known modulation types can be 
identified, while nothing can be done for data sets with unknown signals added. 
  In this paper, a self-learning filter method is proposed for closed-set modulation recognition, 
which can be added to the front end of the network. The composite loss function of center loss 
and traditional loss function is utilized in this method, which can also provide effective 
candidate features for subsequent open-set recognition. In addition, the Opendistance method 
is proposed for open-set recognition, which utilizes similar probabilities of multi-dimensional 
features to classify unknown classes. Our main contributions in this paper are as follows. 
 This paper proposes a new self-learning filter structure. Through the self-supervised 

learning of the structure, the filter structure is generated to improve the channel environment 
of the signal and obtain more easily identifiable signals. 
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 In this paper, we also use the DRSN network structure, which can effectively improve 
the accuracy of CNN network for AMC recognition. In addition, for the loss function, we use 
the combination of the traditional loss function of cross-entropy loss and center-loss to obtain 
a combined loss function that is more suitable for AMC. 
 In this paper, we also discuss the problem of AMC in the field of open-set and propose 

an OpenMax method (Opendistance). This method is added based on OpenMax to analyze the 
effective path of the features from center-loss and proposes the optimal open set recognition 
scheme by combining the two method. 

2.  Signal Model and Open-set Data Selection 
In this section, the overall recognition process framework is presented in Fig. 1. The public 

RadioML2016.10a(RML2016.10a) dataset is utilized to make this letter more convincing. 
 

 
Fig. 1. Modulation identification process framework 

2.1 Signal Model in RadioML.2016.10A 
Digital signals and analog signals are the conventional modulation methods of 

communication. Digital and analog signals are modulated differently by controlling the carrier 
different characteristics, such as: frequency, amplitude and phase. However, the digital and 
analogue signals change the original signal characteristics through the channel and adding 
noise, which makes modulation identification more difficult. The modulation types in this 
paper mainly use the mathematical model of RML2016 signal, as a typical signal model in a 
complex electromagnetic environment. The received signal can be represented as： 

 
 ( )( ) ( ) ( )s t h t x t τ n t= ∗ − + ,  (1) 

 
Where ( )n t  is the additive noise received by the signal, ( )h t  represents the channel impulse 

response, and∗denotes the convolution operation. ( )s t is the modulated signal. Furthermore, 

( )x t is the received signal. τ is the delay of the signal passing through the signal channel. 

The dataset RadioML.2016.10A, which is simulated based on GNU Radio. It has the 
complex channel environment and adding Additive White Gaussian Noise (AWGN) at the end 
further degrades the signal quality, which brings the data closer to reality. The specific 
parameters of the signal are shown in Table 1. It gives some parameters for the public dataset 
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when creating the signal. These include the number of signal sampling points, multipath, and 
fading, the channel model and other relevant data. It also contains 11 modulation signals, 
which includes eight digital modulation schemes and three analog modulation schemes. Each 
modulated signal contains 20 signal-to-noise ratios SNR ranging from -20dB to 18dB, Each 
SNR has 1000 samples, and every sample data is a 2 × 128 vector. Therefore, overall set size 
is: 220000×2×128. 

 
Table 1. RML2016.10a channel parameters 

Parameter Value 
Sampling frequency 200kHz 

Sampling rate offset standard deviation 0.01Hz 
Maximum sampling rate offset 50Hz 

Carrier frequency offset standard deviation 0.01Hz 
Maximum carrier frequency offset 500Hz 

Number of sinusoids used in frequency selective fading 8 
Maximum doppler frequency selective 1 

Fading model Rician  
Rician K-factor 4 

Fractional sample delays for the power delay profile [0, 0.9, 1.7] 
Magnitudes corresponding to each delay time [1, 0.8, 0.3] 

Filter length to interpolate the power delay profile 8 
Standard deviation of the AWGN process  SNR

1010
−

 
 
Therefore, the article was selected from dataset RadioML.2016.10A for two reasons: 
1. For channel simulation, the dynamic channel model hierarchical block is used, which is 
defined by frequency offset, sample rate offset, AWGN, multipath, and fading. This makes the 
signal even more relevant 
2.The dataset RadioML.2016.10A is a publicly available dataset and it is more convincing to 
work on this dataset. 

2.2 Open-set Data selection 
As the open-set is identified, we should select the known signal class and the position signal 

class. To ensure a relatively large difference between the known signal set and the unknown 
signal set, so we select the digital signals as the known signal set and the analogue signals as 
the unknown signal set. The signal modulation types are mainly shown in Table 2: 

 
 Table 2. Signal type in RML2016.10a 

Signal type type 
digital modulation(known) 8PSK BPSK CPFSK GFSK QAM16 QAM64 QPSK PAM4 

analog modulation(unknown) AM-DSB AM-SSB WBFM 
 

3. Proposed Network and Opendistance Method 

3.1 Deep Residual Shrinking Networks 
The CNN model employed in this letter mainly uses three network forms: CNN, 

Resnet(RSN), and DRSN. Resnet(RSN) and DRSN are variants of CNN. Resnet adds a 
residual module to the CNN network. DRSN adds an attention mechanism and soft 
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thresholding based on the residual module. Soft thresholding is a significant step in many 
signal denoising methods. Its purpose is to set the features whose absolute value is lower than 
a certain threshold to zero and adjust other features towards zero, called shrinkage. Soft 
thresholding formulas and derivatives can be represented as 

 

 
,

( ) 0,
,

x τ x τ
f x τ x τ

x τ x τ

− >
= − ≤ ≤
 + < −
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The attention mechanism allows the network to ignore other surrounding environmental 

factors and thus capture more details of the target object. Therefore, using attention 
mechanisms in the model can enhance useful information and suppress redundant information 
in data filtering. The basic structure of DRSN is shown in Fig. 2. 

 

  
Block A Block B 

Fig. 2. The basic structure of DRSN 
 

3.2 Self-learning Filter 
From Fig. 5(a) we can see that increasing the number of layers of the network does not 
effectively increase signal recognition. Therefore, a more effective method is needed to 
improve the recognition rate. In this paper, a self-learning filter module is designed based on 
the concept of filters in communication. It is placed in the front end of the identification 
network. In communication, filters allow specific parts of the frequency signal to pass 
smoothly while significantly suppressing other parts of the frequency signal. It can be regarded 
as a frequency selection circuit, or as a transformation between a response function and a signal 
spectrum in the frequency domain. 

If the input signal is ( )s t whose spectrum is ( )S ω . For a filter, its input function is ' ( )h t , its 
spectrum can be represented as '( )H ω . 
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 '( ) ( ) ( )y t s t h t= ⊗   (4) 
 '( ) ( ) ( )Y S Hω ω ω= •   (5) 

 

 
(a) Self-learning filter module 

 
(b) Multi-order filter 

Fig. 3. The overall structure of the self-learning filter module 
 

In the paper, a DNN network is used to generate a filter. Since the signal form of RML is 
1 2 128× × , ( )s t and ' ( )h t are plural forms , their plural forms are ( ) ( ) ( )I Qs t s t js t= + and

' ' '( ) ( ) ( )I Qh t h t jh t= + , respectively. After fourier transform, multiplying they can get the output
'( ) ( ) ( ) ( ) ( )Real ImagY S H Y jYω ω ω ω ω= • = + . It can be easily obtained via inverse fourier transform 

the time domain output : ( ) ( ) ( )I Qy t y t jy t= + . The overall structure of the self-learning filter 
module network is shown in Fig. 3. Among them, Fig. 3(a) is a self-learning filter module, 
and Fig. 3(b) is a multi-order filter(F). 

In Fig. 3(a), we choose fully connected layer for the self-learning filter module. the para-
meters are in Table 3. 

 
Table 3. The structure parameters of the Fully connected layer 

Layer Output size 
input Batch_size*2*128 

reshape Batch_size *256 
Linear(256,512) Batch_size *512 
Linear(512,512)  Batch_size *512 
 Linear(256,512) Batch_size *256 

reshape Batch_size*2*128 
 
In Fig. 3(b), the filter is composed of a Self-learning filter module, and the output of multiple 
Self-learning filter modules is stitched together to obtain the final input data to the DRSN 
network. 
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3.3 Loss Use in the Paper 
In this paper, the network uses a double loss function(L) for back-propagation, and the 

overall loss function can be expressed as: 
 C CEloss loss loss= +   (6) 

Closs is center-loss, which provides a class center for each class, and its expression can be 
expressed as: 

 
1

2
2|

1 |
2 i

N
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N
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=

= −∑   (7) 

CEloss is the cross-loss entropy. If the classification result of the i−th neuron of the network is 
{ 1O , 2O , ..., nO },and its expression can be expressed as: 
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The overall recognition network is illustrated in Fig. 4. The data is first filtered through a 
Multi-order filter and then fed into the DRSN network module. The center-loss is applied 
before entering the fully connected layer, followed by the output from the fully connected 
layer. Fig. 4 shows the overall structure of the network. 
 

 
Fig. 4. overall recognition network 

 

3.4 Opendistance Method 
For the OpenMAX algorithm, the selected feature map is the first layer of the output. But this 
layer does not fully represent the signal features, especially when there are few known species. 
Therefore, a new algorithm is proposed in the paper(Opendistance). However, since the fully 
connected layers often lead to the loss of some feature information. So the paper selects the 
data after the flatten layer in Fig. 4. Using the feature data can increase the feature sample size. 
Furthermore, the features are more aggregated due to the center loss is utilized in the network. 
Assume that the output feature for correct classification in the training sample is known as x . 

 
Table 4. Opendistance-based open set identification algorithm 

Algorithm 1  Opendistance based open-set identification algorithm. 
Input Initial data x , y , discriminant threshold µ ,data length N , Known signal class iC . 
Output  signal class C. 
1: soft max( )AV x=  
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2: ( )train train
, ,MAV meani j i jAV=  

3: tain
, ,dist( , ,:) i j i ji j AV MAV= −∣ ∣. 

4: dist-max max(dist( , ,:))i i j= . 

5:  num  = sum((dist dist_max ) 0)test
i i i− <=  

6:  P  = num /Ni i   

7: i P  = Softmax(P )dist   

8:  P  = OpenMax(y)unkonwn  

9:  P = [P (1-P ), P ]dist unkown unkown•  

10: if 1 P (1-P )<dist unkown µ•  or 2Punkown µ>  
11： C unkwon=  
12: else 
13:  C kwon=  
14:   if C kwon=  
15:       iC C=   
16:    end if 
17:end if 

Step 1: Deflate the features and perform Softmax on them. The equation can be expressed as : 
 

 soft max( )AV x=  (10) 
Step 2: Based on the classification results, the known data that are correctly classified are 
obtained.  
And the feature centers of different classes can also be obtained according to different classes. 
The mean value is used as the center point in this letter. The equation can be expressed as : 

 ( )train train
, ,MAV meani j i jAV=  (11) 

Step 3: The distance between each class's center vector and that signal's vector can be found. 
The equation can be expressed as : 

 tain
, ,dist( , ,:) i j i ji j AV MAV= −∣ ∣  (12) 

In this equation, i represents the number of correctly classified signals. 
Step 4: The maximum value of each element of each class from the dist can be obtained. The 
equation can be expressed as: 

 dist-max max(dist( , ,:))i i j=   (13) 
Step 5: Let the test set perform to get its dist. The number of elements in the dist less than the 
max-dist is recorded. The equation can be expressed as: 

  num  = sum((dist dist_max ) 0)test
i i i− <=   (14) 

Step 6: The similarity is obtained from the num value, the length N of the data, and the 
probability of obtaining the degree of similarity. 

  P  = num /Ni i   (15) 
Step 7: Perform Softmax operation on the obtained similarity probability to obtain the 
recognition probability. 

 i P  = Softmax(P )dist   (16) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 17, NO. 6, June 2023                  1751 

Step 8: Do OpenMax operation in the final result y in the network to obtain the corresponding 
unknown possibility 

  P  = OpenMax(y)unkonwn   (17) 
Step 9: The final recognition probability is obtained by combining the possibility of the two 
algorithms with the following formula. 

  P = [P (1-P ), P ]dist unkown unkown•   (18) 
Step 10: Determine whether it belongs to unknown type by threshold. If not, it will be 
classified according to the result y . 

4. Simulation Results 
Table 5. The experimental environment for this paper  

No Parameter Value 
 Number of batch size 128 

CPU   CPU model i7-11800 
GPU   GPU model and Memory RTX3070 8GB 

Data Scale Number of samples in RML2016  11× 20× 1000 
Data set  training set ,validation set and test set 6:1:3 

 
In the following experiments, we partition the dataset in 6:1;3, where 60% is the training 

set, 10% is the validation set and 30% is the test set. Openness is defined as the ratio of 
unknown signal types to known ones. In Table 5 presents the data sizes, data division methods 
and hardware types used in our experiments. 

4.1 Average Recognition Rate Comparisons for Close-set 
In this section, our proposed identification method is compared with other commonly used  

methods in closed-set data. In the comparison of network models, we guarantee that the CNN 
module has the same number of layers. 

  
(a) Accuracy curves of closed-set  

eleven signals 
(b) Accuracy curves for the eight digitally 

modulated signals of the closed-set 
 

Fig. 5. Accuracy curves for closed-set signals 
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From Fig. 5(a), it can be seen that increasing the number of layers of the network DRSN 
does not further improve the performance after reaching a certain number of layers (where H 
and L denote different layers and H denotes a higher number of layers). It can also be seen that 
the LSTM algorithm has better results than the usual convolutional network, which is because 
LSTM takes fully into account the continuous relationship of the signal in time. From Fig. 
5(a), it can be observed that the proposed self-learning filter method can improve the accuracy 
of signal recognition. Because it changes the time domain characteristics of the signal through 
the frequency domain and preserves the original characteristics of the signal through splicing 
operation, which can further improve the recognition rate through the central loss method. We 
also compared our method with the two latest approaches [26][27], and our method showed a 
significant improvement in recognition performance. The comparison shows that using the 
method of this letter can make the DRSN network exceed the effect of LSTM. Effectively 
improves the characteristics of DRSN in the time dimension. In open-set identification, since 
the known signal set only consists of digitally modulated signals, the overall recognition 
accuracy of the eight digital modulations is shown in Fig. 5(b).  

4.2 Confusion Map with Different SNR for Close-set 
The confusion diagram depicted in Fig. 6, which clearly represents the classification effect 

of different kinds of signals. The data on the diagonal corresponds to the probability of being 
correctly classified as observed data. All other data are the probability of being incorrectly 
classified into other categories of observations. For negative SNRs in Fig. 6(a), PAM4 and 
AM-SSB are easier to identify when the input signal sequence is at a negative SNRs. The 
SNRs have a significant impact on the classification results of the 8PSK and QPSK modulation 
methods. 8PSK and QPSK are very difficult to classify truly at negative SNRs. For non-
negative SNRs in Fig. 6(b), significant confusion between QAM16 and QAM64, WBFM, and 
AM-DSB can be observed. When the SNRs are non-negative, signals using WBFM still cannot 
be accurately classified. As depicted in the confusion map of confusion map in non-negative 
SNRs, QPSK is best for recognition at non-negative SNRs, it has a 99% precision rate.  
 

  
(a) Confusion map for closed-set identification 

with negative SNRs 
(b) Confusion map for closed-set identification 

with non-negative SNRs 
Fig. 6. Confusion map with different SNRs for close-set 

 
For low SNRs, the performance may be affected because the network may not capture the 
distinguishing characteristics of signals with these modulations through only 128 points, 
leading to confusion and misclassification. 
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4.3 Average Recognition Rate Comparisons in Open-set 
In this paper, digitally modulated signals are treated as a known signal class and analog 

signals as an unknown signal class. Fig. 7(a) shows the recognition rate for open-set 
recognition, and Fig. 7 (b) shows its F1 score. F1 score is a statistical measure of the accuracy 
of a classification model. It incorporates both the accuracy and recall of a classification model. 
Its expression can be expressed as: 

  Recall i
i

i i

TP
TP FN

=
+

  (19) 

  Precision i
i

i i

TP
TP FP

=
+

 (20) 

 
 Precision Recall

1 2
 Precision Recall

i i

i i

F
×

= ×
+

 (21) 

 

  
(a) Accuracy curves for the open-set (b) F1 scores for open-set signals 

Fig. 7. Accuracy curves for closed-set signals 
 

It can be seen from Fig. 7 that the filtering structure and loss function proposed in this letter 
are better differentiated from the unknown signal by improving the convergence of the known 
signal. The Opendistance method has a small improvement on the OpenMax method in terms 
of recognition effect and F1 scores. It is well known that the reduction of data volume is often 
performed in the DNN network layer so that the final output results in the corresponding 
number of classifications, which tends to make part of the data information lost. And using 
Flatten layer in this part of the following two benefits: 1. more data volume, which is a more 
complete preservation of the characteristics of the data. 2. In this letter here using center-loss, 
the method makes the data features here more aggregated at the center point. 

Table 6 discusses F1 scores of the two methods at different openings. It can be seen that 
Opendistance is better than OpenMax at large openings. This is because our proposed method 
has more characteristic parameters to obtain more subtle variability. The main reason is that 
when OpenMax is used, it is not effective to establish Weibull models for a small number of 
categories, while Opendistance not only uses Weibull models, but also uses corresponding 
distances to correct. 
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Table 6. Mean F1 and Mean Average Accuracy with different degrees of openness 

Openness parameter 3/8 3/6 3/4 

Methods 
L+F+OpenMax Mean F1 0.6178 0.5725 0.5408 

MAA 0.6474 0.6178 0.5718 

L+F+Opendistanc Mean F1 0.6218 0.6088 0.5842 
MAA 0.6562 0.6425 0.6284 

 
Table 7 compares the complexity of the two methods. It can be seen that the complexity of 

Open-distance test is slightly higher, but the recognition effect is better. There are two reasons 
for this. Firstly, the method retains more data volume, resulting in a more complete 
preservation of data characteristics. In addition, in this paper, central loss is used, which makes 
the data features here more concentrated at the central point. Lastly, this method not only 
employs OpenMax but also incorporates signal distance classification probability into the 
center-loss function. 

 
Table 7. complexity comparison for open-set 

Method Test(s) Parameters(MB) Flops(G) 

L+F+OpenMax 15 9.36 0.096 
L+F+Opendistance 19 9.54 0.097 

 

4.4 Confusion Map with Different SNR for Open-set 
 

  
(a) Confusion map for open-set identification 

with negative SNRs 
(b) Confusion map for open-set identification 

with non-negative SNRs 
Fig. 8. Confusion map with different SNRs for open-set 

 
The confusion diagram depicted in Fig. 8, which clearly represents the classification effect 

of different kinds of signals. The data on the diagonal corresponds to the probability of being 
correctly classified as observed data. All other data are the probability of being incorrectly 
classified into other categories of observations. 

For the negative SNR in Fig. 8 (a), when the input signal sequence is at the negative SNR, 
PAM4, GFSK and QAM64 are easier to identify, but QAM16 can easily be divided into 
QAM64. Modulated 8PSK and QPSK are sensitive to SNR. The classification accuracy of 
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8PSK and QPSK drops sharply at low SNR. For the non-negative SNR in Fig. 8 (b), obvious 
confusion between QAM16 and QAM64 can be observed. When SNR is non-negative, the 
signal with QAM16 is the most difficult to predict. As shown in the confusion diagram of the 
confusion map in the non-negative SNR, With the exception of QAM16, the accuracy of all 
signals (including unknown signals) is above 95%. This may be the fact that the deep network 
cannot differentiate between the subtle differences in signal characteristics between QAM16 
and QAM64, or that additional means are needed to distinguish them. 

5. Conclusion 
This paper proposes an effective AMC method that combines the center loss and the self-

learning filter method, which processes the signal in the signal frequency domain and 
effectively improves the signal recognition rate. In open-sets, center-loss can be effective in 
removing unknown signals. This is because center-loss allows the ideal baseband modulated 
signal to be considered as a central vector, and it allows training samples to be clustered 
towards that central vector. By comparing the accuracy and F1 scores, the proposed method 
shows a significant improvement in OSC(Open-Set Classification) performance compared to 
OpenMAX, effectively identifying known signals and unknown ones simultaneously. 
Although our method requires more complexity than OpenMAX, we believe it is acceptable 
in OSC. In conclusion, the proposed AMC method with the center loss and the self-learning 
filter method is an effective approach for signal recognition, especially in open-set scenarios. 
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