• Title/Summary/Keyword: modified wood

Search Result 144, Processing Time 0.029 seconds

Investigating the Antibacterial Qualities of Copper Particle-Infused UV-Curable Paint for Wood Flooring Boards (구리입자 기반 UV경화도료 코팅 목질 마루판의 항균 특성)

  • Lee, Dong-Gun;Lim, Nam-Gi;Koh, Jae-Song
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.4
    • /
    • pp.393-404
    • /
    • 2023
  • This research evaluates the antibacterial and transparency properties of UV-curable paint augmented with 20wt% copper particles. The transparency assessment indicated that the paint maintained a total luminous transmittance of 90% or above, thereby matching or surpassing the performance of standard UV-curing paints. To further test its antibacterial capabilities, wooden flooring boards were coated with the UV-curable paint laced with 20wt% copper particles, which had been surface-modified with a silane coupling agent. Following the fatigue tests of these treated boards, an impressive bacterial reduction rate of 99.9% was noted after a span of 6 hours, demonstrating the paint's exceptional antibacterial performance.

Characteristics of Mycelial Growth and Enzyme Activities of Mattirolomyces terfezioides Collected from Robinia pseudoacacia Forest in Korea (국내 아까시나무 숲에서 수집한 감자덩이버섯(Mattirolomyces terfezioides)의 균사 생장 특성과 효소 활성)

  • Jeon, Sung-Min;Wang, Eun-Jin;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.43 no.3
    • /
    • pp.165-173
    • /
    • 2015
  • Mattirolomyces terfezioides is a type of sweet truffles that predominantly form ectomycorrhizae with Robinia pseudoacacia. It is also worthy of artificial cultivation. This is the first report on characteristics of mycelial growth and enzyme activities of M. terfezioides collected from R. pseudoacacia forest in Korea. M. terfezioides showed the highest mycelial growth when cultured on potato dextrose agar (PDA) at $30^{\circ}C$ or in modified Melin-Norkran's liquid medium (pH 8.0). The biomass of M. terfezioides was higher in liquid medium containing nitrate-nitrogen than ammonium-nitrogen by 1.8 fold. The mycelia of M. terfezioides showed both carboxymethylcellulase and laccase activities on solid media for enzyme screening.

Three-Dimensional Finite Element Analysis of Tieback Walls in Sand

  • Lim, Yu-Jin;Briaud, Jean-Louis
    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.33-52
    • /
    • 1997
  • A three dimensional nonlinear finite element analysis is used to study the influence of various design decisions for tieback walls. The numerical model simulates the soldier piles and the tendon bonded length of the anchors with beam elements, the unbonded tendon with a spring element, the wood lagging with the shell elements, and the soil with solid 3D nonlinear elements. The soil model used is a modified hyperbolic model with unloading hysteresis. The complete sequence of construction is simulated including the excavation, and the placement and stressing of the anchors. The numerical model is calibrated against a full scale instrumented tieback wall at the National Geotechnical Experimentation Site (NGES) on the Riverside Campus of Texas A&M University. Then a parametric study is conducted. The results give information on the influence of the following factors on the wall behavior : location of the first anchor, length of the tendon unbonded zone, magnitude of the anchor forces, embedment of the soldier piles, stiffness of the wood lagging, and of the piles. The implications in design are discussed.

  • PDF

Characteristics of Lotus (Nelumbo nucifera G.) Leafstalk Pulp for the Development of High Performance Paper (기능성 섬유원료 개발을 위한 연잎줄기 펄프의 특성)

  • Choi, Tae-Ho;Seo, Ji-Cheol;Lee, Ji-Nyeon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.2
    • /
    • pp.67-74
    • /
    • 2010
  • This study was carried out to investigate the pulping and papermaking characteristics of lotus (Nelumbo nucifera G.) leafstalk for the development of high performance paper. Anatomical and chemical properties of the lotus leafstalk were analyzed. The pulping and papermaking properties of the lotus leafstalk by conventional alkali and sulfomethylated pulping processes were also evaluated. The length and width of fibers were 0.06-3.32 mm (av. 1.23 mm) and 3.47-25.6 ${\mu}m$ (av. 20.7 ${\mu}m$), respectively. The length and width of vessel elements were 0.07-0.78 mm (av. 0.20 mm) and 14.1-330.0 ${\mu}m$ (av. 54.13 ${\mu}m$), respectively. The fiber length/fiber width ratio was 60.20. The extractives (cold water, hot water, 1% NaOH and ethanol-benzene) and lignin content of lotus leafstalk were higher than those of plant bast fiber. The contents of holocellulose, lignin, and ash were 73.8%, 24.3%, and 4.3%, respectively. The pulp yields based on pulping methods were sulfomethylated pulping av. 52%, and alkaline pulping av. 42%. The conventional alkaline pulping shows better pulp and sheet properties than the sulfomethylated pulping which was modified pulping processes. But the sulfomethylated pulping shows higher brightness than alkali pulping. In the consequence of FE-SEM observation, lotus leafstalk pulp consists of various kinds of thin walled fibers which have large amount of small pits.

Bending Strength of Korean Softwood Species for 120×180 mm Structural Members

  • Pang, Sung-Jun;Park, Joo-Saeng;Hwang, Kweon-Hwan;Jeong, Gi-Young;Park, Moon-Jae;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.444-450
    • /
    • 2011
  • The goal of this study is to investigate bending properties of domestic timber. Three representative structural timber from Larix kaempferi, Pinus koraiensis, and Pinus densiflora, in the northeastern South Korea were selected. Visual grading for the timber was conducted based on KFRI notification 2009-01 and the bending strength for the timber was evaluated based on ASTM D 198 bending. The high percentage of grade 1 and 2 for Larix kaempferi shows that the KFRI notification was optimized for this species. The bending strength distributions from Pinus koraiensis and Pinus densiflora were very similar. It could be possible to specify the allowable bending properties of these two Specification using a united species group similar to spruce-pine-fir. Lastly, the bending strength of $120{\times}180mm$ structural members was higher than both existing values in KBC 2009 and design values for timber of imported species described in the NDS. Thus, 120 mm thick domestic softwoods could replace the commercial imported species and the KBC should be modified to provide design values for both timber and dimensional lumber, respectively, like NDS.

The Application of Rule of Mixtures to Fiber-Reinforced Composites(1) - Mechanical Properties of Fiber-Reinforced, Sulfur-Based Composites - (목재 섬유 복합재(複合材)에 혼합이론(混合理論)의 적용에 관(關)한 연구(硏究) (1) - 유황(硫黃) 화합물(化合物)을 사용한 목재(木材) 섬유(纖維) 복합재(複合材)의 기계적 성질(性質) -)

  • Lee, Byung-G.
    • Journal of the Korean Wood Science and Technology
    • /
    • v.11 no.3
    • /
    • pp.3-13
    • /
    • 1983
  • Fiber mats were made at five density levels, using fibers from kraft pulp screening rejects, rice straw and a 50/50 mixture of the two. They were soaked in the sulfur compounds. Specimens cut from the composite panels were tested in flexure at time intervals for one year to study the effect of aging. Modulus of elasticity (MOE) and modulus of rupture (MOR) were determined. Under optimum conditions of fiber mat preparation and saturation with molten sulfur and modified sulfur, composites were produced which exhibited mechanical properties comparable to conventional fiberglass in some properties and superior to conventional wood-based composition boards, For example. the moduli of elasticity of the reinforced composites made from pulp screening rejects, with a density of 0.35 gm/$cm^3$, were greater than 1,000,000 psi as compared 800.000 psi for high-density hardboard (1.28 gm/$cm^3$). Modulus of rupture of the best reinforced composites was about 7,000 psi, comparable to 6,000 psi of high-density hardboard.

  • PDF

Characterization of by-products from organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of acid and alkali catalysts

  • Koo, Bon-Wook;Gwak, Ki-Seob;Park, Na-Hyun;Jeong, Han-Seob;Choi, Joon-Weon;Yeo, Hwan-Myeong;Choi, In-Gyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.520-520
    • /
    • 2009
  • Organic by-products derived from cellulose and lignin during organosolv pretreatments of yellow poplar wood (Liriodendron tulipifera) in the presence of $H_2SO_4$ and NaOH as catalysts, respectively, were subjected to various analyses to elucidate their effects on further performance of biological ethanol fermentation and provide preliminary data for the structure and utilization of organosolv lignin. Monomeric sugars amounted to ca. 2.2-7.7% in the organosoluble fraction of the organosolv pretreatment with $H_2SO_4$, while significantly low amount of sugars (0.2-0.3%) were determined in that of the organosolv pretreatment with NaOH. In case of addition of $H_2SO_4$ during organosolv pretreatment of biomass, a fermentation of the organosoluble fraction could be considered as an essential process to increase an efficiency of biomass utilization as well as yield of bioethanol. Precipitates, insoluble by-products in the solvent mixture, were also cficiency oed by diverse analytical methods and revealed that these were typically composed of a lignin moiety regardless of catalyst. According to the results of nuclear magnetic resonance (NMR), Fourier Tcinsform Infrared Spectroscopy (FT-IR) and Gel permeation chromatograp r (GPC), the main components of precipitates seem to be lignin polymers. However, their structures could be slightly modified during pretreatment and mixed with some carbohydrates by chemical bonds and/or physical associations.

  • PDF

Effects of Medium, Temperature and pH on Mycelial Growth and Cellulase Activity of Ectomycorrhizal Fungi from Korean Forests (우리나라 산림에서 분리한 외생균근균의 균사생장에 있어 배지, 온도, pH의 영향과 셀룰라아제 활성)

  • Jeon, Sung-Min;Kim, Min-Soo;Ka, Kang-Hyeon
    • The Korean Journal of Mycology
    • /
    • v.40 no.4
    • /
    • pp.191-203
    • /
    • 2012
  • Mycelial growth of ectomycorrhizal fungi (27 strains of 8 species) collected from Korean forests was observed on various culture conditions (media, temperature, pHs). After 60 days of incubation, all strains grown on potato dextrose agar (PDA) and modified Melin-Norkran's agar (MMNA), whereas no mycelial growth was observed on malt extract agar (MEA) or sabouraud dextrose agar (SDA) in some strains including Tricholoma matsutake. Mycelial growth on PDA was poor at high temperature ($30^{\circ}C$) than the low temperature ($10^{\circ}C$). The optimal temperature on PDA and pH in potato dextrose broth (PDB) for mycelial growth in most strains were $20-25^{\circ}C$ and pH 4-5, respectively. All strains tested showed the carboxymethyl cellulase (CM-cellulase) activity and the maximal cellullase activity was expressed by the mycelium of T. matsutake (KFRI 1266) on the CMC agar plate with pH 5.0.

Effect of Different Conditions of Sodium Chloride Treatment on the Characteristics of Kenaf Fiber-Epoxy Composite Board

  • SETYAYUNITA, Tamaryska;WIDYORINI, Ragil;MARSOEM, Sri Nugroho;IRAWATI, Denny
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.2
    • /
    • pp.93-103
    • /
    • 2022
  • Currently, biofibers are used as a reinforcement in polymer composites for structural elements and construction materials instead of the synthetic fibers which cause environmental problems and are expensive. One of the chemicals with a pH close to neutral that can be potentially used as a modified fiber material is sodium chloride (NaCl). Therefore, this study aims to investigate the characteristics of a composite board made from NaCl-treated kenaf fiber. A completely randomized design method was used with consideration of two factors: the content of NaCl in the treatment solution (1 wt%, 3 wt%, and 5 wt%) and the duration of immersion of fibers in the solution (1 h, 2 h, and 3 h). The NaCl treatment was conducted by soaking the fibers in the solution for different durations. The fibers were then rinsed with water until the pH of the water reached 7 and subsequently dried inside an oven at 80℃ for 6 h. Kenaf fiber and epoxy were mixed manually with the total loading of 20 wt% based on the dry weight of the fiber. Physical and mechanical properties of the fibers were then evaluated based on JIS A 5908 particleboard standards. The results showed that increasing NaCl content in the fiber treatment solution can increase the physical and mechanical properties of the composite board. The properties of fibers treated with 5 wt% NaCl for 3 h were superior with a modulus of elasticity of 2.085 GPa, modulus of rupture of 19.77 MPa, internal bonding of 1.8 MPa, thickness swelling of 3%, and water absorption of 10.9%. The contact angle of untreated kenaf fibers was 104°, which increased to 80° and 73° on treatment with 1 wt% and 5 wt% NaCl for 3 h, respectively.

Sesquiterpenoids Bioconversion Analysis by Wood Rot Fungi

  • Lee, Su-Yeon;Ryu, Sun-Hwa;Choi, In-Gyu;Kim, Myungkil
    • 한국균학회소식:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.19-20
    • /
    • 2016
  • Sesquiterpenoids are defined as $C_{15}$ compounds derived from farnesyl pyrophosphate (FPP), and their complex structures are found in the tissue of many diverse plants (Degenhardt et al. 2009). FPP's long chain length and additional double bond enables its conversion to a huge range of mono-, di-, and tri-cyclic structures. A number of cyclic sesquiterpenes with alcohol, aldehyde, and ketone derivatives have key biological and medicinal properties (Fraga 1999). Fungi, such as the wood-rotting Polyporus brumalis, are excellent sources of pharmaceutically interesting natural products such as sesquiterpenoids. In this study, we investigated the biosynthesis of P. brumalis sesquiterpenoids on modified medium. Fungal suspensions of 11 white rot species were inoculated in modified medium containing $C_6H_{12}O_6$, $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ for 20 days. Cultivation was stopped by solvent extraction via separation of the mycelium. The metabolites were identified as follows: propionic acid (1), mevalonic acid lactone (2), ${\beta}$-eudesmane (3), and ${\beta}$-eudesmol (4), respectively (Figure 1). The main peaks of ${\beta}$-eudesmane and ${\beta}$-eudesmol, which were indicative of sesquiterpene structures, were consistently detected for 5, 7, 12, and 15 days These results demonstrated the existence of terpene metabolism in the mycelium of P. brumalis. Polyporus spp. are known to generate flavor components such as methyl 2,4-dihydroxy-3,6-dimethyl benzoate; 2-hydroxy-4-methoxy-6-methyl benzoic acid; 3-hydroxy-5-methyl phenol; and 3-methoxy-2,5-dimethyl phenol in submerged cultures (Hoffmann and Esser 1978). Drimanes of sesquiterpenes were reported as metabolites from P. arcularius and shown to exhibit antimicrobial activity against Gram-positive bacteria such as Staphylococcus aureus (Fleck et al. 1996). The main metabolites of P. brumalis, ${\beta}$-Eudesmol and ${\beta}$-eudesmane, were categorized as eudesmane-type sesquiterpene structures. The eudesmane skeleton could be biosynthesized from FPP-derived IPP, and approximately 1,000 structures have been identified in plants as essential oils. The biosynthesis of eudesmol from P. brumalis may thus be an important tool for the production of useful natural compounds as presumed from its identified potent bioactivity in plants. Essential oils comprising eudesmane-type sesquiterpenoids have been previously and extensively researched (Wu et al. 2006). ${\beta}$-Eudesmol is a well-known and important eudesmane alcohol with an anticholinergic effect in the vascular endothelium (Tsuneki et al. 2005). Additionally, recent studies demonstrated that ${\beta}$-eudesmol acts as a channel blocker for nicotinic acetylcholine receptors at the neuromuscular junction, and it can inhibit angiogenesis in vitro and in vivo by blocking the mitogen-activated protein kinase (MAPK) signaling pathway (Seo et al. 2011). Variation of nutrients was conducted to determine an optimum condition for the biosynthesis of sesquiterpenes by P. brumalis. Genes encoding terpene synthases, which are crucial to the terpene synthesis pathway, generally respond to environmental factors such as pH, temperature, and available nutrients (Hoffmeister and Keller 2007, Yu and Keller 2005). Calvo et al. described the effect of major nutrients, carbon and nitrogen, on the synthesis of secondary metabolites (Calvo et al. 2002). P. brumalis did not prefer to synthesize sesquiterpenes under all growth conditions. Results of differences in metabolites observed in P. brumalis grown in PDB and modified medium highlighted the potential effect inorganic sources such as $C_4H_{12}N_2O_6$, $KH_2PO_4$, $MgSO_4$, and $CaCl_2$ on sesquiterpene synthesis. ${\beta}$-eudesmol was apparent during cultivation except for when P. brumalis was grown on $MgSO_4$-free medium. These results demonstrated that $MgSO_4$ can specifically control the biosynthesis of ${\beta}$-eudesmol. Magnesium has been reported as a cofactor that binds to sesquiterpene synthase (Agger et al. 2008). Specifically, the $Mg^{2+}$ ions bind to two conserved metal-binding motifs. These metal ions complex to the substrate pyrophosphate, thereby promoting the ionization of the leaving groups of FPP and resulting in the generation of a highly reactive allylic cation. Effect of magnesium source on the sesquiterpene biosynthesis was also identified via analysis of the concentration of total carbohydrates. Our current study offered further insight that fungal sesquiterpene biosynthesis can be controlled by nutrients. To profile the metabolites of P. brumalis, the cultures were extracted based on the growth curve. Despite metabolites produced during mycelia growth, there was difficulty in detecting significant changes in metabolite production, especially those at low concentrations. These compounds may be of interest in understanding their synthetic mechanisms in P. brumalis. The synthesis of terpene compounds began during the growth phase at day 9. Sesquiterpene synthesis occurred after growth was complete. At day 9, drimenol, farnesol, and mevalonic lactone (or mevalonic acid lactone) were identified. Mevalonic acid lactone is the precursor of the mevalonic pathway, and particularly, it is a precursor for a number of biologically important lipids, including cholesterol hormones (Buckley et al. 2002). Farnesol is the precursor of sesquiterpenoids. Drimenol compounds, bi-cyclic-sesquiterpene alcohols, can be synthesized from trans-trans farnesol via cyclization and rearrangement (Polovinka et al. 1994). They have also been identified in the basidiomycota Lentinus lepideus as secondary metabolites. After 12 days in the growth phase, ${\beta}$-elemene caryophyllene, ${\delta}$-cadiene, and eudesmane were detected with ${\beta}$-eudesmol. The data showed the synthesis of sesquiterpene hydrocarbons with bi-cyclic structures. These compounds can be synthesized from FPP by cyclization. Cyclic terpenoids are synthesized through the formation of a carbon skeleton from linear precursors by terpene cyclase, which is followed by chemical modification by oxidation, reduction, methylation, etc. Sesquiterpene cyclase is a key branch-point enzyme that catalyzes the complex intermolecular cyclization of the linear prenyl diphosphate into cyclic hydrocarbons (Toyomasu et al. 2007). After 20 days in stationary phase, the oxygenated structures eudesmol, elemol, and caryophyllene oxide were detected. Thus, after growth, sesquiterpenes were identified. Per these results, we showed that terpene metabolism in wood-rotting fungi occurs in the stationary phase. We also showed that such metabolism can be controlled by magnesium supplementation in the growth medium. In conclusion, we identified P. brumalis as a wood-rotting fungus that can produce sesquiterpenes. To mechanistically understand eudesmane-type sesquiterpene biosynthesis in P. brumalis, further research into the genes regulating the dynamics of such biosynthesis is warranted.

  • PDF