DOI QR코드

DOI QR Code

Effects of Medium, Temperature and pH on Mycelial Growth and Cellulase Activity of Ectomycorrhizal Fungi from Korean Forests

우리나라 산림에서 분리한 외생균근균의 균사생장에 있어 배지, 온도, pH의 영향과 셀룰라아제 활성

  • Jeon, Sung-Min (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Kim, Min-Soo (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute) ;
  • Ka, Kang-Hyeon (Division of Wood Chemistry & Microbiology, Korea Forest Research Institute)
  • 전성민 (국립산림과학원 화학미생물과) ;
  • 김민수 (국립산림과학원 화학미생물과) ;
  • 가강현 (국립산림과학원 화학미생물과)
  • Received : 2012.11.17
  • Accepted : 2012.12.06
  • Published : 2012.12.31

Abstract

Mycelial growth of ectomycorrhizal fungi (27 strains of 8 species) collected from Korean forests was observed on various culture conditions (media, temperature, pHs). After 60 days of incubation, all strains grown on potato dextrose agar (PDA) and modified Melin-Norkran's agar (MMNA), whereas no mycelial growth was observed on malt extract agar (MEA) or sabouraud dextrose agar (SDA) in some strains including Tricholoma matsutake. Mycelial growth on PDA was poor at high temperature ($30^{\circ}C$) than the low temperature ($10^{\circ}C$). The optimal temperature on PDA and pH in potato dextrose broth (PDB) for mycelial growth in most strains were $20-25^{\circ}C$ and pH 4-5, respectively. All strains tested showed the carboxymethyl cellulase (CM-cellulase) activity and the maximal cellullase activity was expressed by the mycelium of T. matsutake (KFRI 1266) on the CMC agar plate with pH 5.0.

우리나라 산림에서 수집한 외생균근균 8종 27개 균주에 대한 균사 생장 특성을 다양한 배양 조건(배지, 온도, pH)에서 조사하였다. 60일 배양 후, 모든 균주는 PDA와 MMN 배지에서 생장하였으나, 송이를 포함한 일부 균주들은 MEA나 SDA 배지에서 전혀 생장하지 않았다. 또한 대부분의 균주들을 PDA 배지에서 배양했을 때에 저온($10^{\circ}C$)보다 고온($30^{\circ}C$)에서 균사 생장이 저조하였다. 또한 PDA 배지 상에서의 최적 생장온도는 $20-25^{\circ}C$, PDB 배지 내 균사 생장을 위한 최적 pH는 4-5로 나타났다. Carboxymethyl cellulose(CMC) 활성은 모든 시험 균주에서 나타났으며, CMC(pH 5.0) 한천배지 상에서 최대의 셀룰라아제 활성을 나타낸 균주는 송이(1266)였다.

Keywords

References

  1. Barros, L., Baptista, P. and Ferreira, I. C. F. R. 2006. Influence of the culture medium and pH on the growth of saprobic and ectomycorrhizal mushroom mycelia. Minerva Biotec. 18:165- 170.
  2. Berch, S. M., Ka, K. H., Park, H. and Winder, R. 2007. Development and potential of the cultivated and wild-harvested mushroom industries in the Republic of Korea and British Columbia. JEM. 8(3):53-75.
  3. Bhat, M. K. 2000. Cellulases and related enzymes in biotechnology. Biotech. Adv. 18:355-383. https://doi.org/10.1016/S0734-9750(00)00041-0
  4. Choi, J. H., Ozawa, N., Yamakawa, Y., Nagai, K., Hirai, H. and Kawagish, H. 2011. Leccinine A, an endoplasmic reticulum stress-suppressive compound from the edible mushroom Leccinum extremiorientale. Tetrahedron. 67(35):6649-6653. https://doi.org/10.1016/j.tet.2011.05.052
  5. Chudzynski, K., Bielawski, L. and Falandysz, J. 2009. Mercury bio-concentration potential of larch bolete, Suillus grevillei, Mushroom. Bul.l Environ. Contam. Toxicol. 83:275-279. https://doi.org/10.1007/s00128-009-9723-7
  6. Dennis, J. 1985. Effect of pH and temperature on in vitro growth of ectomycorrhizal fungi. pp. 1-19. Cannadian Forest Service Pacific Forestry Centre, Canada.
  7. Fu, S. Z., Wang, Q. B. and Yao, Y. J. 2006. An annotated checklist of Leccinum in China. Mycotaxon. 96:47-50.
  8. Giomaro, G., Sisti, D. and Zambonelli, A. 2005. Cultivation of edible ectomycorrhizal fungi by in vitro mycorrhizal synthesis. Soil Biology. 4:253-267. https://doi.org/10.1007/3-540-27331-X_14
  9. Harvey, L. M., 1991. Cultivation techniques for the production of ectomycorrhizal fungi. Biotech. Adv. 9:13-29. https://doi.org/10.1016/0734-9750(91)90402-H
  10. Jackson, R. M. and Mason, P. A. 1984. Mycorrhiza: Culture and nutrition of sheathing mycorrhizal fungi. The institute of Biology's Studies in Biotechnology. 159:31-33. The Camelot Press Ltd., London, UK.
  11. Ka, K. H., Jeon, S. M., Ryoo, R., Ryu, S. H., Kim, M. G, Bak, W. C., Park, J. W., Koo, C. D. and Eom, A. H. 2011. Management of genetic resources of forest microorganisms. Korea Forest Research Institute, Research report. 434: p3. (in Korean).
  12. Kasana, R. C., Salwan, R., Dhar, H., Dutt, S. and Gulati, A. 2008. A rapid and easy method for the detection of microbial cellulases on agar plates using gram's iodine. Curr. Microbiol. 57(5):503-507. https://doi.org/10.1007/s00284-008-9276-8
  13. Kim, H. J. and Han, S. K. 2009. 200 Mushrooms of forest in Korea. Korea National Arboretum. (in Korean).
  14. Kim, H. J., Lee, I. S. and Lee, K. R. 1999. Antimutagenic and anticancer effects of Ramaria botrytis(Fr.) rick extracts. J. Korean Soc. Food Sci. Nutr. 28(6):1321-1325.
  15. Kim, I. Y., Jung, G. R., Han, S. K., Cha J. Y. and Sung, J. M. 2005. Favorable condition for mycelial growth of Tricholoma matsutake. Kor. J. Mycol. 33(1): 22-29. (in Korean). https://doi.org/10.4489/KJM.2005.33.1.022
  16. Kim, J. H., Yoo, K. H. and Seok, S. J. 2007. Screening test of wild mushroom methanol extracts for fibrinolytic and a-glucosidase inhibitory activity. J. Exp. Biomed. Sci. 13(3):245-249.
  17. Kusuda, M., Ueda, M., Konishi, Y., Yamanaka, K., Terashita, T. and Miyatake, K. 2007. Effects of carbohydrate substrate on the vegetative mycelial growth an ectomycorrhizal mushroom, Tricholoma matsutake, isolated from Quercus. Mycoscience. 48:358-364. https://doi.org/10.1007/s10267-007-0384-2
  18. Kusuda, M., Ueda, M., Miyatake, K. and Terachita, T. 2008. Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience. 49:291- 297. https://doi.org/10.1007/s10267-008-0423-7
  19. Laiho, O. 1970. Paxillus involutus as a mycorrhizal symbiont of forest trees. Acta For. Fenn . 106:5-72.
  20. Madigan, M. T., Martinko J. M. and Parker, J. 2009. Brock Biology of Microorganisms. 12 edition, pp. 151-167. Pearson/Benjamin Cummings. (in Korean).
  21. Marx, D. H. 1969. The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic infections. I. Antagonism of mycorrhizal fungi to root pathogenic fungi and soil bacteria. Phytopathology. 59:153-163.
  22. Mortimer, P. E., Karunarathna, S. C., Li, Q., Gui, H., Yang, X., Yang, X., He, J., Ye, L., Guo, J., Li, H., Sysouphanthong, P., Zhou, D., Xu, J. and Hyde, K. D. 2012. Prized edible Asian mushrooms: ecology, conservation and sustainability. Fungal Divers. 56:31-47. https://doi.org/10.1007/s13225-012-0196-3
  23. Murat, C., Mello, A., Abba, S., Vizzini, A. and Bonfante, P. 2008. Edible mycorrhizal fungi: identification, life cycle and morphogenesis. In: Mycorrhiza-state of the art, genetics and molecular biology, eco-function, biotechnology, eco-physiology, structure and systematics, 3rd edition, pp. 707-732. Eds. A. Varma. Springer-Verlag, Berlin Heidelberg.
  24. Norkrans, B. 1950. Studies in growth and cellulolytic enzymes of Tricholoma. Symb. Bot . Ups. 11:1-126.
  25. Ohta, A. 1997. Ability of ectomycorrhizal fungi to utilize search and related substrates. Mycoscience. 38:404-408.
  26. Sanchez, F., Mario Honrubia, M. and Torres, P. 2001. Effects of pH, water stress and temperature on in vitro cultures of ectomycorrhizal fungi from Mediterranean forests. Cryptogamie, Mycol. 22 (4):243-258. https://doi.org/10.1016/S0181-1584(01)01076-4
  27. Terashita, T., Kono, M., Yoshikawa, K. and Shishiyama, J. 1995. Productivity of hydrolytic enzymes by mycorrhizal mushrooms. Mycoscience. 36:221-225. https://doi.org/10.1007/BF02268561
  28. Zhang, Y-H. P., Himmel, M. E. and Mielenz, J. R. 2006. Outlook for cellulase improvement: Screening and selection. Biotechnol Adv. 24:452-481. https://doi.org/10.1016/j.biotechadv.2006.03.003
  29. Zimbro, M. J. and Power, D. A. 2003. Difco & BBL manual; manual of Microbiological Culture Media. Becton Dickinson and Company, Sparks.
  30. Yamanaka, T. 2003. The effect of pH on the growth of saprotrophic and ectomycorrhizal ammonia fungi in vitro. Mycologia. 95(4):584-589. https://doi.org/10.2307/3761934
  31. Yaoita, Y., Satoh, Y. and Kikuchi, M. 2007. A new ceramide from Ramaria botrytis (Pers.) Ricken. J. Nat. Med. 61:205-207. https://doi.org/10.1007/s11418-006-0121-8

Cited by

  1. Characteristics of Mycelial Growth and Enzyme Activities of Mattirolomyces terfezioides Collected from Robinia pseudoacacia Forest in Korea vol.43, pp.3, 2015, https://doi.org/10.4489/KJM.2015.43.3.165
  2. Cultural Characteristics of Korean Ectomycorrhizal Fungi vol.43, pp.1, 2015, https://doi.org/10.4489/KJM.2015.43.1.1
  3. Effects of Preservation Period at Low Temperature on the Mycelial Growth and the Lignocellulolytic Enzyme Activities of Basidiomycetes vol.42, pp.4, 2014, https://doi.org/10.4489/KJM.2014.42.4.322
  4. Mycelial Growth and Extracellular Enzyme Activities of Wood-decaying Mushroom Strains on Solid Media vol.42, pp.1, 2014, https://doi.org/10.4489/KJM.2014.42.1.40
  5. Mycelial Growth and in vitro Ectomycorrhizal Synthesis on Pinus densiflora Seedlings of Tricholoma bakamatsutake in Korea vol.42, pp.4, 2014, https://doi.org/10.4489/KJM.2014.42.4.312