• Title/Summary/Keyword: modified clay

Search Result 243, Processing Time 0.023 seconds

Studies on Composite Filaments from Nanoclay Reinforced Polypropylene

  • Joshi, Mangala;Shaw, M.;Butola, B.S.
    • Fibers and Polymers
    • /
    • v.5 no.1
    • /
    • pp.59-67
    • /
    • 2004
  • The development of high tenacity, high modulus monofilaments from Polypropylene/Clay nanocomposite has been investigated. Pure sodium montmorillonite nanoclay was modified using hexadecyl trimethyl ammonium bromide (HTAB) via an ion exchange reaction. Pure and modified clay were characterized through X-ray diffraction, FTIR and TGA. The modified clay was melt blended with polypropylene (PP) in presence of a swelling agent. Composite filaments from PP/Clay nanocomposite were prepared at different weight percentages of nanoclay and the spinning and drawing conditions were optimized. The filaments were characterized for their mechanical, morphological and thermal properties. The composite PP filaments with modified clay showed improved tensile strength, modulus and reduced elongation at break. The composite filaments with unmodified clay did not show any improvement in tensile strength but the modulus improved. The sharp and narrow X-ray diffraction peaks of PP/nanoclay composite filaments indicate increase in crystallinity in presence of modified clay at small loadings (0.5 %). The improved thermal stability was observed in filaments with modified as well as unmodified clays.

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

Numerical Analysis of Piezocone Test using Modified Cam-Clay Model (Modified Cam-Clay Model을 이용한 피에조콘 시험의 수치해석)

  • Kim, Dae-Kyu;Lee, Woo-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.89-99
    • /
    • 2001
  • In this study, the numerical analysis of piezocone penetration and dissipation tests has been conducted using the Modified Cam-Clay model, which is generally used in soil mechanics. The Modified Cam-Clay model and related mathematical equations in finite element derivation have been formulated in the Updated Lagrangian reference frame to take the large displacement and finite strain nature of piezocone penetration into consideration. The cone tip resistance, the pore water pressure, and the dissipation curve obtained from the finite element analysis have been compared and investigated with the experimental results from piezocone penetration test performed in Yangsan site. The numerical results showed good agreement with the experimental results; however, the better numerical simulation of the continuous and deep penetration needs further research.

  • PDF

Analytical solution of stress-strain relationship of modified Cam clay in undrained shear

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.263-274
    • /
    • 2009
  • The modified Cam clay (MCC) model is used to study the response of virgin compressed clay in undrained compression. The MCC deviatoric stress-strain relationship is obtained in closed form. Elastic and plastic deviatoric strains are taken into account in the analysis. For the determination of the elastic strain components, both a variable shear modulus and constant shear modulus are considered. Constitutive relationships are applied to the well-known London and Weald clays sheared in undrained compression.

Removal of NOM in a Coagulation Process Enhanced by Modified Clay (개질 Clay를 첨가한 응집공정에서의 자연유기물 제거)

  • Park, Ji-Hye;Lee, Sang-Yoon;Park, Hung-Suck
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.37-46
    • /
    • 2007
  • A feasibility test was conducted to evaluate the addition of turbidity substance in a coagulation process to remove natural organic matters (NOM), the precursor of disinfection by-products (DBPs). The experimental water sources were synthetic water containing 5 mg/L of humic acid and 50 mg/L of NaHCO3 and drinking water resource of Ulsan city (S Dam water, D Dam water and Nak-Dong raw water). The examined turbidity substances were kaolin, acid clay, and modified clay (0.38 meq $NH_4{^+}-N/g$ clay). In Jar tests at different concentrations of the turbidity substances (5, 10, 15, 20, 30 mg/L) using the synthetic water, the turbidity substances improved the removal of turbidity, UV-254 absorbance and dissolved organic carbon (DOC) by 23.8-38.1%, 17.0-24.5% and 2.5-44.5%, respectively. The modified clay showed higher removal efficiencies than other substances. In Jar tests using the drinking water, 10 and 20 mg/L of modified clay enhanced the removal efficiencies of turbidity, UV-254 absorbance, DOC, trihalomethane formation potential (THMFP), and haloacetic acid formation potential (HAAFP) by 3.0~4.3%, 19.1~29.0%, 12~34.9%, 4.9~36.7%, and 1.6~30.2%, respectively.

Study on mechanical properties of phosphate tailings modified clay as subgrade filler

  • Xiaoqing Zhao;Tianfeng Yang;Zhongling Zong;Teng Liang;Zeyu Shen;Jiawei Li;Gui Zhao
    • Geomechanics and Engineering
    • /
    • v.36 no.6
    • /
    • pp.619-629
    • /
    • 2024
  • To improve the utilization rate of phosphate tailings (PTs) and widen the sources of subgrade filler, the PTs is employed to modify clay, forming a PTs modified clay, applied in the subgrade. Accordingly, the environmental friendliness of PTs was investigated. Subsequently, an optimal proportion was determined through compaction and California Bearing Ratio (CBR) experiments. Afterward, the stability of mixture with the optimal proportion was further evaluated through the water stability and dry-wet stability experiments. Finally, via the gradation and microstructure experiments, the strength mechanism of PTs modified clay was analyzed. The results show that the PTs were classified in the non-hazardous solid wastes, belonging to Class A building materials. With the increase of PTs content and the decrease of clay content, the optimum water content and the swelling degree gradually decrease, while the maximum dry density and CBR first increase and then decrease, reaching their peak value at 50% PTs content, which is the optimal proportion. The resilient modulus of PTs modified clay at the optimal proportion reaches 110.2 MPa. The water stability coefficient becomes stable after soaking for 4 days, while the dry-wet stability coefficient decreases with the increase of cycles and tends to be stable after 8 cycles. Under the long-term action, the dry-wet change has a greater adverse impact than continuous soaking. The analysis demonstrates that the better strength mainly comes from the skeleton role of PTs and the cementation of clay. The systematic laboratory test results and economic analysis collectively provide data evidence for the advantages of PTs modified clay as a subgrade filler.

Analytical solution for undrained plane strain expansion of a cylindrical cavity in modified cam clay

  • Silvestri, Vincenzo;Abou-Samra, Ghassan
    • Geomechanics and Engineering
    • /
    • v.4 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • This paper presents the results of analytical and numerical analyses of the effects of performing a pressuremeter test or driving a pile in clay. The geometry of the problem has been simplified by the assumptions of plane strain and axial symmetry. Pressuremeter testing or installation of driven piles has been modelled as an undrained expansion of a cylindrical cavity. Stresses, pore water pressures, and deformations are found by assuming that the clay behaves like normally consolidated modified Cam clay. Closed-form solutions are obtained which allow the determination of the principal effective stresses and the strains around the cavity. The analysis which indicates that the intermediate principal stress at critical state is not equal to the mean of the other two principal stresses, except when the clay is initially isotropically consolidated, also permits finding the limit expansion and excess pore water pressures by means of the Almansi finite strain approach. Results are compared with published data which were determined using finite element and finite difference methods.

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants

  • Lalhmunsiama, Lalhmunsiama;Malsawmdawngzela, Ralte;Vanlalhmingmawia, Chhakchhuak;Tiwari, Diwakar;Yoon, Yiyong
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.502-522
    • /
    • 2022
  • Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.

Experimental and Modeling Studies for the Adsorption of Phenol from Water Using Natural and Modified Algerian Clay

  • Djemai, Ismahane;Messaid, Belkacem
    • Korean Chemical Engineering Research
    • /
    • v.58 no.4
    • /
    • pp.624-634
    • /
    • 2020
  • The ability of natural and modified clay to adsorb phenol was studied. The clay samples were analyzed by different technical instruments, such as X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. Surface area, pore volume and average pore diameter were also determined using B.E.T method. Up to 73 and 99% of phenol was successfully adsorbed by natural and activated clay, respectively, from the aqueous solution. The experiments carried out show that the time required to reach the equilibrium of phenol adsorption on all the samples is very close to 60 min. The amount of phenol adsorbed shows a declining trend with higher pH as well as with lower pH, with most extreme elimination of phenol at pH 4. The adsorption of phenol increases proportionally with the initial phenol concentration. The maximum adsorption capacity at 25 ℃ and pH 4 was 29.661 mg/g for modified clay (NaMt). However, the effect of temperature on phenol adsorption was not significant. The simple modification causes the formation of smaller pores in the solid particles, resulting in a higher surface area of NaMt. The equilibrium results in aqueous systems were well fitted by the Freundlich isotherm equation (R2 > 0.98). Kinetic studies showed that the adsorption process is best described by the pseudo-second-order kinetics (R2 > 0.99). The adsorption of phenol on natural and modified clay was spontaneous and exothermal.

The Electrocatalytic Reduction of Molecular Oxygen with Clay Modified Electrodes (점토광물을 이용한 산소환원의 전기화학적 촉매성에 관한 연구)

  • Oh Sung-Hun;Hwang Jin-Yeon;Shim Yoon-Bo;Lee Hyomin;Yoon Jihae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2005
  • The electrocatalytic reduction of O₂ was investigated with methyl viologen and methylene blue incorporated clay-modified electrodes. Clay suspensions were prepared with Na-montmorillonite, Ca-montmorillonite, and kaolinite. The methyl viologen-clay modified electrodes were made by coating clay suspensions adsorbing methyl viologen on a glassy carbon electrode. Cyclic voltammetry were performed in aqueous media to investigate the electrocatalytic property of the modified electrode in reducing O₂. A Na-montmorillonite modified electrode showed the greatest adsorption capacity for methyl viologen. The modified electrode made of Na-montmorillonite suspension of 0.87 g/10 mL and a 2.5 mM of methyl viologen solution showed the most effective electrocatalytic property, where the catalytic reduction potential was shifted by 242.6 mV toward the positive potential. The electrocatalytic ability was more significant in acidic (pH=3.7) and alkaline (pH=12.7) media than the neutral pH range (6.3∼8.3). The methyl viologen-Na-montmorillonite modified electrode had the good reproducibility and maintain the electrocatalytic property over 20 times reuse.