Browse > Article
http://dx.doi.org/10.9713/kcer.2020.58.4.624

Experimental and Modeling Studies for the Adsorption of Phenol from Water Using Natural and Modified Algerian Clay  

Djemai, Ismahane (Laboratoire de Recherche en Hydraulique Appliquee, Departement d'Hydraulique, Universite de Batna 2)
Messaid, Belkacem (Laboratoire de Recherche en Hydraulique Appliquee, Departement d'Hydraulique, Universite de Batna 2)
Publication Information
Korean Chemical Engineering Research / v.58, no.4, 2020 , pp. 624-634 More about this Journal
Abstract
The ability of natural and modified clay to adsorb phenol was studied. The clay samples were analyzed by different technical instruments, such as X-ray fluorescence (XRF), X-ray diffraction (XRD) and FT-IR spectroscopy. Surface area, pore volume and average pore diameter were also determined using B.E.T method. Up to 73 and 99% of phenol was successfully adsorbed by natural and activated clay, respectively, from the aqueous solution. The experiments carried out show that the time required to reach the equilibrium of phenol adsorption on all the samples is very close to 60 min. The amount of phenol adsorbed shows a declining trend with higher pH as well as with lower pH, with most extreme elimination of phenol at pH 4. The adsorption of phenol increases proportionally with the initial phenol concentration. The maximum adsorption capacity at 25 ℃ and pH 4 was 29.661 mg/g for modified clay (NaMt). However, the effect of temperature on phenol adsorption was not significant. The simple modification causes the formation of smaller pores in the solid particles, resulting in a higher surface area of NaMt. The equilibrium results in aqueous systems were well fitted by the Freundlich isotherm equation (R2 > 0.98). Kinetic studies showed that the adsorption process is best described by the pseudo-second-order kinetics (R2 > 0.99). The adsorption of phenol on natural and modified clay was spontaneous and exothermal.
Keywords
Phenol; Clay; Adsorption; Langmuir model; Freundlich model; Temkin model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gadsden, A., Infrared spectra of minerals and related inorganic compounds, The Butterworth group, UK(1975).
2 Brunauer, S., Emmet, P. H. and Teller, E., J. Am. Chem. Soc., 60, 309(1938).   DOI
3 Barrett, E. P., Joyner, L. G. and Halenda, P. H., J. Am. Chem. Soc., 73, 373(1951).   DOI
4 Hall, K. R., Eagleton, L. C., Acrivos, A. and Vermeulen, T., Ind. Eng. Chem. Fundam., 5, 212(1966).   DOI
5 Freundlich, H. M. F., Z. Phys. Chem., 57, 385(1906).
6 Temkin, M. I. and Pyzhev, V., Acta Physiochim., 12, 327(1940).
7 Fu, Q., Deng, Y., Li, H., Liu, J., Hu, H., Chen, S. and Sa, T., Appl. Surf. Sci., 255(8), 4551(2009).   DOI
8 Aksu, Z., Tatli, A. I., and Tunc, O., Che. Eng. J., 142, 23(2008).   DOI
9 Legube, B., Le traitement des eaux de surface pour la production d'eau Potable, Guide technique, Agence Loire, Bretagne, France(1996).
10 Degremont, S. A., Memento technique de l'eau, 10th Edition Lavoisier, Rueil-Malmaison, in two vols(2004).
11 Agency for toxic substances and disease registry (ATSDR), Toxicological profile for phenol, Atlanta, GA: U.S., Department of health and human services, Public health service(2008).
12 Michalowicz, J. and Duda, W., Polish J. of Environ. Stud., 16(3), 347(2007).
13 Knop, A. and Pilato, L. A., Phenolic resins: chemistry, applications and Performance, Springer Science & Business Media(2013).
14 World Health Organization (WHO), Guidelines for Drinking Water Quality, Health Criteria and Supporting Information, World Health Organization, vol. 2, Geneva, Switzerland(1984).
15 Dutta, N. N., Brothakur, S. and Baruah, R., Water Environ. Res., 70, 4(1998).   DOI
16 Huang, F. C., Lee, J. F., Lee, C. K. and Chao, H. P., Coll. Surf. A, 239, 41(2004).   DOI
17 Vimonses, V., Lei, S., Jin, B., Chowd, C. W. K. and Saint, C., Chem. Eng. J., 148, 354 (2009).   DOI
18 Ozcan, A., Oncu, E. M. and Ozcan, A. S., J. Colloid Interface Sci., 280, 44(2004).   DOI
19 Naseem, R. and Tahir, S. S., Water Res., 35, 3982(2001).   DOI
20 Ozcan, A. S. and Ozcan, A., J. Colloid Interface Sci., 276, 39 (2004).   DOI
21 Witthuhn, B., Klauth, P., Klumpp, E., Narres, H. D. and Martinius, H., Appl. Clay Sci., 28, 55(2005).   DOI
22 Gonen, Y. and Rytwo, G., J. Colloid Interface Sci., 299, 95(2006).   DOI
23 Bhattacharyya, K. G. and Sen Gupta, S. J. Colloid Interface Sci., 310, 411(2007).   DOI
24 Koyuncu, H., Appl. Clay Sci., 38, 279(2008).   DOI
25 Shu, Y., Li, L., Zhang, Q. and Wu, H., J. Hazard. Mater., 173, 47(2010).   DOI
26 Christidis, G., Applied Clay Sci., 13, 79(1998).   DOI
27 Hassani, A. H., Seif, S., Javid, A. H. and Borghei, M., Int. J. Environ. Res., 2(3), 239(2008).
28 Aghamohammadi, N., Hamidi, A. A., Hasnain, I. M., Zinatizadeh, A. A., Nasrollahzadeh Saravi, H. and Ghafari, Sh., Int. J. Environ. Res., 1, 96(2007).
29 Ghodbane, I., Nouri, L., Hamdaoui, O. and Chiha, M., J. Hazard. Mater., 152(1), 148(2008).   DOI
30 Banat, F. A., Al-Bashir, B., Al-Asheh, S. and Hayajneh, O., Environ. Pollut., 107, 391(2000).   DOI
31 Juang, R. S., Lin, S. H. and Tsao, K. H., J. Colloid Interface Sci., 254(2002).
32 Thommes, M., Kaneko, K., Neimark, A. V., Olivier, J. P., Rodriguez-Reinoso, F., Rouquerol, J. and Sing, K. S. W., Pure Appl. Chem., 87, 1051(2015).   DOI
33 Novikova, L., Ayrault, P., Fontaine, C., Chatel, G., Jerome, F. and Belchinskaya, L., Ultrason. Sonochem., 31, 598(2016).   DOI
34 Rouquerol, F., Rouquerol, J. and Sing, H., Adsorption by powders and porous solids: principles - methodology and applications, Academic Press London(1999).
35 Tahani, A., Karroua, M., El Farissi, M., Levitz, P., van Damme, H., Bergaya, F. and Margulies, L., J. Chem. Phys., 96, 464(1999).
36 He, J., Zhou, Q. H., Guo, J. S. and Fang, F., Environ. Sci. Pollut. R., 25, 22224(2018).   DOI
37 Acisli, O., Karaca, S. and Gurses, A., Appl. Clay. Sci., 142, 90(2017).   DOI
38 Lagergren, S. and Vetenskapsakad, K. S., Handl. Band., 24, 1 (1898).
39 Ho, Y. S. and McKay, G., Process. Biochem., 34, 451(1999).   DOI
40 Weber, W. J. and Morris, J. C., Proc. Int. Conf., Water Pollution Symposium, vol. 2. Pergamon, Oxford, pp. 231(1962).
41 El Nemr, A., Abdelwahab, O., El-sikaily, A. and Khaled, A., J. Hazard. Mater., 161, 102(2009).   DOI
42 Shukla, A., Zhang, Y. H., Dubey, P., Margrave, J. L. and Shukla, S. S., J. Hazard. Mater., 95, 137(2002).   DOI
43 Hameed, B. H., Colloid Surf. A: Physicochem. Eng. Aspects, 307, 45 (2007).   DOI
44 Srivastava, V. C., Swamy, M. M., Mall, I. D., Prasad, B. and Mishra, I. M., Colloids Surf. A, 272, 89(2006).   DOI
45 Langmuir, I., J. Am. Chem. Soc., 40, 1361(1918).   DOI
46 Langmuir, I., J. Am. Chem. Soc., 38, 2221(1916).   DOI
47 Ramos Vianna, M. M. G., Franco, J. H. R., Pinto, C. A., Valenzuela Diaz, F. R. and Buchler, P. M., Braz. J. Chem. Eng., 21(2), 239(2004).   DOI
48 Djebbar, M., Djafri, F., Bouchekara, M. and Djafri, A., Applied Water Science, 2, 77(2012).   DOI
49 Diaz-Nava, M. C., Olguin, M. T. and Solache-Rios, M., J. Incl. Phenom Macrocycl Chem., 74, 67(2012).   DOI
50 Hank, D., Azi, Z., Ait Hocine, S., Chaalal, O., Hellal, A., J. Ind. Eng. Chem., 20, 2256(2014).   DOI
51 Xu, Y., Khan, M. A., Wang, F., Xia, M. and Lei, W., Appl. Clay Sci., 162, 204(2018).   DOI
52 Ren, S., Deng, J., Meng, Z., Wang, T., Xie, T. and Xu, S., Powder Technol., 356, 284(2019).   DOI
53 Ouallal, H., Dehmani, Y., Moussout, H., Messaoudi, L., Azrour, M., Heliyon, 5, e01616(2019).   DOI
54 Bouiahya, K., Es-saidi, I., El Bekkali, C., Laghzizil, A., Robert, D., Nunzi, J. M. and Saoiabi, A., Colloids Interface Sci. Commun., 31, 100188(2019).   DOI
55 Khalaf, H., Bouras, O. and Perrichon, V., Microp. Mater., 8, 141 (1997).   DOI
56 Boutahala, M. and Tedjar, F., Solid States Ionics, 61, 257(1993).   DOI
57 Hajjaji, M., Kacim, S., Alami, A., El-Bouadili, A. and El Mountassir, M., Appl. Clay Sci., 20, 1(2001).   DOI
58 Madejova, J., Vib. Spectrosc., 31, 1(2003).   DOI