Browse > Article
http://dx.doi.org/10.14478/ace.2022.1089

Advancement of Clay and Clay-based Materials in the Remediation of Aquatic Environments Contaminated with Heavy Metal Toxic Ions and Micro-pollutants  

Lalhmunsiama, Lalhmunsiama (Department of Industrial Chemistry, School of Physical Sciences Mizoram University)
Malsawmdawngzela, Ralte (Department of Chemistry, School of Physical Sciences Mizoram University)
Vanlalhmingmawia, Chhakchhuak (Department of Chemistry, School of Physical Sciences Mizoram University)
Tiwari, Diwakar (Department of Chemistry, School of Physical Sciences Mizoram University)
Yoon, Yiyong (Department of Biosystems and Convergence Engineering, Catholic Kwandong University)
Publication Information
Applied Chemistry for Engineering / v.33, no.5, 2022 , pp. 502-522 More about this Journal
Abstract
Clay minerals are natural materials that show widespread applications in various branches of science, including environmental sciences, in particular the remediation of water contaminated with various water pollutants. Modified clays and minerals have attracted the attention of researchers in the recent past since the modified materials are seemingly more useful and efficient for removing emerging water contaminants. Therefore, modified engineered materials having multi-functionalities have received greater interest from researchers. The advanced clay-based materials are highly effective in the remediation of water contaminated with organic and inorganic contaminants, and these materials show enhanced selectivity towards the specific pollutants. The review inherently discusses various methods employed in the modification of clays and addresses the challenges in synthesizing the advanced engineered materials precursor to natural clay minerals. The changes in physical and chemical properties, as investigated by various characterization techniques before and after the modifications, are broadly explained. Further, the implications of these materials for the decontamination of waterbodies as contaminated with potential water pollutants are extensively discussed. Additionally, the insights involved in the removal of organic and inorganic pollutants are discussed in the review. Furthermore, the future perspectives and specific challenges in the scaling up of the treatment methods in technology development are included in this communication.
Keywords
Advanced clay based materials; Sorption mechanism; Micro-pollutants; Heavy metals; Synthesis of advanced materials;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. A. K. Rao and M. Kashifuddin, Adsorption properties of coriander seed powder (Coriandrum Sativum): extraction and pre-concentration of Pb(II), Cu(II) and Zn(II) Ions from aqueous solution, Adsorpt. Sci. Technol., 30, 127-146 (2012).   DOI
2 Lalhmunsiama, D. Tiwari, and S.-M. Lee, Physico-chemical studies in the removal of Sr(II) from aqueous solutions using activated sericite, J. Environ. Radioact., 147, 76-84 (2015).   DOI
3 S. M. Lee, Lalhmunsiama, and D. Tiwari, Sericite in the remediation of Cd(II)- and Mn(II)-contaminated waters: batch and column studies, Environ. Sci. Pollut. Res., 21, 3686-3696 (2014).   DOI
4 K. H. Vardhan, P. S. Kumar, and R. C. Panda, A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives, J. Mol. Liq., 290, 111197 (2019).   DOI
5 M. Barkat, S. Chegrouche, A. Mellah, B. Bensmain, D. Nibou, and M. Boufatit, application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions, J. Surf. Eng. Mater. Adv. Technol., 04, 210-226 (2014).
6 S. Sen Gupta and K. G. Bhattacharyya, Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium, J. Environ. Manage., 87, (2008) 46-58.   DOI
7 O. Etci, N. Bektas and M. S. Oncel, Single and binary adsorption of lead and cadmium ions from aqueous solution using the clay mineral beidellite, Environ. Earth Sci., 61, 231-240 (2010).   DOI
8 C.-J. Wang, Z. Li, and W.-T. Jiang, Adsorption of ciprofloxacin on 2:1 dioctahedral clay minerals, Appl. Clay Sci., 53, 723-728 (2011).   DOI
9 M. Kaur and M. Datta, Diclofenac sodium adsorption onto montmorillonite: Adsorption equilibrium studies and drug release kinetics, Adsorpt. Sci. Technol., 32, 365-387 (2014).   DOI
10 WHO, Guidelines for drinking-water quality: First addendum to volume 1, World Health Organization; 3rd Ed. 188, Geneva (2006).
11 K. C. Nebagha, K. Ziat, L. Rghioui, M. Khayet, M. Saidi, K. Aboumaria, A. El Hourch, and S. Sebti, Adsorptive removal of copper (II) from aqueous solutions using low cost Moroccan adsorbent. Part I: Parameters influencing Cu (II) adsorption, J. Mater. Env. Sci., 6, 3022-3033 (2015).
12 M. Rajeswari, P. Agrawal, S. Pavithra, Priya, G. R. Sandhya, and G. M. Pavithra, Continuous biosorption of cadmium by Moringa olefera in a packed column, Biotechnol. Bioprocess Eng., 18, 321-325 (2013).   DOI
13 J. Kent and J. H. Tay, Treatment of 17αethinylestradiol, 4nonylphenol, and carbamazepine in wastewater using an aerobic granular sludge sequencing batch reactor, Sci. Total Environ., 652, 1270-1278 (2019).   DOI
14 M. Eloussaief and M. Benzina, Efficiency of natural and acid-activated clays in the removal of Pb(II) from aqueous solutions, J. Hazard. Mater., 178, 753-757 (2010).   DOI
15 E. K. Putra, R. Pranowo, J. Sunarso, N. Indraswati, and S. Ismadji, Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: Mechanisms, isotherms and kinetics, Water Res., 43, 2419-2430 (2009).   DOI
16 R. Shawabkeh, Experimental study and modeling of basic dye sorption by diatomaceous clay, Appl. Clay Sci., 24, 111-120 (2003).   DOI
17 P. Komadel and J. Madejova, Acid Activation of Clay Minerals, In: F. Bergaya, B.K.G. Theng, G. Lagaly, Developments in Clay Science, 263-287, Elsevier (2013).
18 H. Gallouze, D.-E. Akretche, C. Daniel, I. Coelhoso, and J. G. Crespo, Removal of synthetic estrogen from water by adsorption on modified bentonites, Environ. Eng. Sci., 38, 4-14 (2021).   DOI
19 E. Bojemueller, A. Nennemann, and G. Lagaly, Enhanced pesticide adsorption by thermally modified bentonites, Appl. Clay Sci., 18, 277-284 (2001).   DOI
20 A. Gil, Y. El Mouzdahir, A. Elmchaouri, M. A. Vicente, and S. A. Korili, Equilibrium and thermodynamic investigation of methylene blue adsorption on thermal- and acid-activated clay minerals, Desalin. Water Treat., 51, 2881-2888 (2013).   DOI
21 R. Rusmin, B. Sarkar, B. Biswas, J. Churchman, Y. Liu, and R. Naidu, Structural, electrokinetic and surface properties of activated palygorskite for environmental application, Appl. Clay Sci., 134, 95-102 (2016).   DOI
22 J. A. Torres-Luna and J. G. Carriazo, Porous aluminosilicic solids obtained by thermal-acid modification of a commercial kaolinite-type natural clay, Solid State Sci., 88, 29-35 (2019).   DOI
23 T. S. Anirudhan, S. Jalajamony, and S. S. Sreekumari, Adsorption of heavy metal ions from aqueous solutions by amine and carboxylate functionalised bentonites, Appl. Clay Sci., 65-66, 67-71 (2012).   DOI
24 L. M. Weatherly and J. A. Gosse, Triclosan exposure, transformation, and human health effects, J. Toxicol. Environ. Health Part B., 20, 447-469 (2017).   DOI
25 U. Ecer, S. Yilmaz, and T. Sahan, Highly efficient Cd(II) adsorption using mercapto-modified bentonite as a novel adsorbent: an experimental design application based on response surface methodology for optimization, Water Sci. Technol., 78, 1348-1360 (2018).   DOI
26 J. Han, X. Liang, Y. Xu, and Y. Xu, Removal of Cu2+ from aqueous solution by adsorption onto mercapto functionalized palygorskite, J. Ind. Eng. Chem., 23, 307-315 (2015)..   DOI
27 T. Undabeytia, F. Madrid, J. Vazquez, and J. I. Perez-Martinez, Grafted Sepiolites for the Removal of Pharmaceuticals in Water Treatment, Clays Clay Miner., 67, 173-182 (2019).   DOI
28 R. Malsawmdawngzela and D. Tiwari, 17α-Ethinylestradiol elimination using synthesized and dense nanocomposite materials: Mechanism and real matrix treatment, Korean J. Chem. Eng., 39, 646-654 (2022).   DOI
29 D. J. L. Guerra, I. Mello, R. Resende, and R. Silva, Application as absorbents of natural and functionalized Brazilian bentonite in Pb2+ adsorption: Equilibrium, kinetic, pH, and thermodynamic effects, Water Resour. Ind., 4, 32-50 (2013).   DOI
30 P. LeBaron, Polymer-layered silicate nanocomposites: an overview, Appl. Clay Sci., 15, 11-29 (1999).   DOI
31 P. G. Slade and W. P. Gates, The swelling of HDTMA smectites as influenced by their preparation and layer charges, Appl. Clay Sci., 25, 93-101 (2004).   DOI
32 M. Ogawa, T. Handa, K. Kuroda and C. Kato, Formation of organoammonium-montmorillonites by solid-solid reactions, Chem. Lett., 19, 71-74 (1990).   DOI
33 S. Yoshimoto, F. Ohashi, and T. Kameyama, X-ray diffraction studies of intercalation compounds prepared from aniline salts and montmorillonite by a mechanochemical processing, Solid State Commun., 136, 251-256 (2005).   DOI
34 B. Cheknane, O. Bouras, M. Baudu, J.-P. Basly, and A. Cherguielaine, Granular inorgano-organo pillared clays (GIOCs): Preparation by wet granulation, characterization and application to the removal of a Basic dye (BY28) from aqueous solutions, Chem. Eng. J., 158, 528-534 (2010).   DOI
35 X. Jin, M. Jiang, J. Du, and Z. Chen, Removal of Cr(VI) from aqueous solution by surfactant-modified kaolinite, J. Ind. Eng. Chem., 20, 3025-3032 (2014).   DOI
36 H. Chen, Y. Zhao and A. Wang, Removal of Cu(II) from aqueous solution by adsorption onto acid-activated palygorskite, J. Hazard. Mater., 149, 346-354 (2007).   DOI
37 M. Toor, B. Jin, S. Dai, and V. Vimonses, Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater, J. Ind. Eng. Chem., 21, 653-661 (2015)..   DOI
38 J. Nones, J. Nones, H. G. Riella, A. Poli, A. G. Trentin, and N. C. Kuhnen, Thermal treatment of bentonite reduces aflatoxin b1 adsorption and affects stem cell death, Mater. Sci. Eng. C, 55, 530-537 (2015).   DOI
39 J. U. K. Oubagaranadin, Z. V. P. Murthy, and V. P. Mallapur, Removal of Cu(II) and Zn(II) from industrial wastewater by acid-activated montmorillonite-illite type of clay, Comptes Rendus Chim., 13, 1359-1363 (2010).   DOI
40 S. Arfaoui, N. Frini-Srasra, and E. Srasra, Modelling of the adsorption of the chromium ion by modified clays, Desalination, 222, 474-481 (2008).   DOI
41 Y. Deng, F. Wu, B. Liu, X. Hu, and C. Sun, Sorptive removal of β-blocker propranolol from aqueous solution by modified attapulgite: Effect factors and sorption mechanisms, Chem. Eng. J., 174, 571-578 (2011).   DOI
42 M. Addy, B. Losey, R. Mohseni, E. Zlotnikov, and A. Vasiliev, Adsorption of heavy metal ions on mesoporous silica-modified montmorillonite containing a grafted chelate ligand, Appl. Clay Sci., 59-60, 115-120 (2012).   DOI
43 S. Aytas, M. Yurtlu, and R. Donat, Adsorption characteristic of U(VI) ion onto thermally activated bentonite, J. Hazard. Mater., 172, 667-674 (2009).   DOI
44 T. S. Anirudhan and M. Ramachandran, Synthesis and characterization of amidoximated polyacrylonitrile/organobentonite composite for Cu(II), Zn(II), and Cd(II) adsorption from aqueous solutions and industry wastewaters, Ind. Eng. Chem. Res., 47, 6175-6184 (2008).   DOI
45 A. (Fern) Phuekphong, K. Imwiset, and M. Ogawa, Adsorption of Triclosan onto Organically Modified-Magadiite and Bentonite, J. Inorg. Organomet. Polym. Mater., 31, 1902-1911 (2021).   DOI
46 A.S.K. Kumar, S. Kalidhasan, V. Rajesh, and N. Rajesh, Application of Cellulose-Clay Composite Biosorbent toward the Effective Adsorption and Removal of Chromium from Industrial Wastewater, Ind. Eng. Chem. Res., 51, 58-69 (2012).   DOI
47 Y. Ma, L. Lv, Y. Guo, Y. Fu, Q. Shao, T. Wu, S. Guo, K. Sun, X. Guo, E. K. Wujcik, and Z. Guo, Porous lignin based poly (acrylic acid)/organo-montmorillonite nanocomposites: Swelling behaviors and rapid removal of Pb (II) ions, Polymer, 128, 12-23 (2017).   DOI
48 Q. Yang, M. Gao, Z. Luo, and S. Yang, Enhanced removal of bisphenol A from aqueous solution by organo-montmorillonites modified with novel Gemini pyridinium surfactants containing long alkyl chain, Chem. Eng. J., 285, 27-38 (2016).   DOI
49 A. Di Gianni, E. Amerio, O. Monticelli, and R. Bongiovanni, Preparation of polymer/clay mineral nanocomposites via dispersion of silylated montmorillonite in a UV curable epoxy matrix, Appl. Clay Sci., 42, 116-124 (2008).   DOI
50 Negrete, J.-M. Letoffe, J.-L. Putaux, L. David, and E. Bourgeat-Lami, Aqueous Dispersions of Silane-Functionalized Laponite Clay Platelets. A First Step toward the Elaboration of Water-Based Polymer/Clay Nanocomposites, Langmuir, 20, 1564-1571 (2004).   DOI
51 V.B. Yadav, R. Gadi, and S. Kalra, Clay based nanocomposites for removal of heavy metals from water: A review, J. Environ. Manage., 232, 803-817 (2019).   DOI
52 O. Bouras, J.-C. Bollinger, M. Baudu, and H. Khalaf, Adsorption of diuron and its degradation products from aqueous solution by surfactant-modified pillared clays, Appl. Clay Sci., 37, 240-250 (2007).   DOI
53 S.-Z. Li and P.-X. Wu, Characterization of sodium dodecyl sulfate modified iron pillared montmorillonite and its application for the removal of aqueous Cu(II) and Co(II), J. Hazard. Mater., 173, 62-70 (2010).   DOI
54 J. Su, H.-G. Huang, X.-Y. Jin, X.-Q. Lu, and Z.-L. Chen, Synthesis, characterization and kinetic of a surfactant-modified bentonite used to remove As(III) and As(V) from aqueous solution, J. Hazard. Mater., 185, 63-70 (2011).   DOI
55 G. Crini, and P.-M. Badot, Sorption Processes and Pollution: Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters, 191-192, Universite de Franche Comte Besancon, France (2010).
56 R. Srinivasan, Advances in Application of Natural Clay and Its Composites in Removal of Biological, Organic, and Inorganic Contaminants from Drinking Water, Adv. Mater. Sci. Eng., 2011, 1-17 (2011).   DOI
57 S. M. Lee and D. Tiwari, Organo and inorgano-organo-modified clays in the remediation of aqueous solutions: An overview, Appl. Clay Sci., 59-60, 84-102 (2012).   DOI
58 D. Tiwari and S. M. Lee, Thanhmingliana, Hybrid materials in the decontamination of bisphenol A from aqueous solutions, RSC Adv.,4, 43921-43930 (2014).
59 Thanhmingliana and D. Tiwari, Efficient use of hybrid materials in the remediation of aquatic environment contaminated with micropollutant diclofenac sodium, Chem. Eng. J., 263, 364-373 (2015).   DOI
60 K. G. Bhattacharyya, S. S. Gupta, Kaolinite, montmorillonite, and their modified derivatives as adsorbents for removal of Cu(II) from aqueous solution, Sep. Purif. Technol., 50, 388-397 (2006).   DOI
61 V. N. Tirtom, A. Dincer, S. Becerik, T. Aydemir, and A. Celik, Comparative adsorption of Ni(II) and Cd(II) ions on epichlorohydrin crosslinked chitosan-clay composite beads in aqueous solution, Chem. Eng. J., 197, 379-386 (2012).   DOI
62 S. Mnasri-Ghnimi, and N. Frini-Srasra, Removal of heavy metals from aqueous solutions by adsorption using single and mixed pillared clays, Appl. Clay Sci., 179, 105151 (2019).   DOI
63 Q. Wang, X. Chang, D. Li, Z. Hu, R. Li, and Q. He, Adsorption of chromium(III), mercury(II) and lead(II) ions onto 4-aminoantipyrine immobilized bentonite, J. Hazard. Mater., 186, 1076-1081 (2011).   DOI
64 M. Alexandre and P. Dubois, Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials, Mater. Sci. Eng. R Rep., 28, 1-63 (2000).   DOI
65 G. Beyer, Nanocomposites: a new class of flame retardants for polymers, Plast. Addit. Compd., 4, 22-28 (2002).   DOI
66 S.M. Lee, Lalhmunsiama, Thanhmingliana, and D. Tiwari, Porous hybrid materials in the remediation of water contaminated with As(III) and As(V), Chem. Eng. J., 270, 496-507 (2015).   DOI
67 Y. Park, G. A. Ayoko, and R. L. Frost, Application of organoclays for the adsorption of recalcitrant organic molecules from aqueous media, J. Colloid Interface Sci., 354, 292-305 (2011).   DOI
68 E. I. Unuabonah, and A. Taubert, Clay-polymer nanocomposites (CPNs): Adsorbents of the future for water treatment, Appl. Clay Sci., 99, 83-92 (2014).   DOI
69 D. L. Guerra, S. P. Oliveira, R. A. S. Silva, E. M. Silva, and A. C. Batista, Dielectric properties of organofunctionalized kaolinite clay and application in adsorption mercury cation, Ceram. Int., 38, 1687-1696 (2012).   DOI
70 L. Zhu, and R. Zhu, Simultaneous sorption of organic compounds and phosphate to inorganic-organic bentonites from water, Sep. Purif. Technol., 54, 71-76 (2007).   DOI
71 J. Hua, Synthesis and characterization of bentonite based inorgano-organo-composites and their performances for removing arsenic from water, Appl. Clay Sci., 114, 239-246 (2015).   DOI
72 X. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, and L. Li, Adsorption of arsenic on modified montmorillonite, Appl. Clay Sci., 97-98, 17-23 (2014).   DOI
73 Q. Zuo, X. Gao, J. Yang, P. Zhang, G. Chen, Y. Li, K. Shi, and W. Wu, Investigation on the thermal activation of montmorillonite and its application for the removal of U(VI) in aqueous solution, J. Taiwan Inst. Chem. Eng., 80, 754-760 (2017).   DOI
74 L. Heller-Kallai, Chapter 7.2 Thermally Modified Clay Minerals, In: Dev. Clay Sci., Elsevier, 289-308 (2006).
75 T. Sahan, F. Erol, and S. Yilmaz, Mercury(II) adsorption by a novel adsorbent mercapto-modified bentonite using ICP-OES and use of response surface methodology for optimization, Microchem. J., 138, 360-368 (2018).   DOI
76 F. Piscitelli, P. Posocco, R. Toth, M. Fermeglia, S. Pricl, G. Mensitieri, and M. Lavorgna, Sodium montmorillonite silylation: Unexpected effect of the aminosilane chain length, J. Colloid Interface Sci. 351(1), 108-115 (2010)   DOI
77 S. B. Y. Abeywardena, S. Perera, K. M. Nalin de Silva, and N. P. Tissera, A facile method to modify bentonite nanoclay with silane, Int. Nano Lett., 7, 237-241 (2017).   DOI
78 A. Xue, S. Zhou, Y. Zhao, X. Lu, and P. Han, Effective NH2-grafting on attapulgite surfaces for adsorption of reactive dyes, J. Hazard. Mater., 194, 7-14 (2011).   DOI
79 X. Liang, Y. Xu, G. Sun, L. Wang, Y. Sun, Y. Sun, and X. Qin, Preparation and characterization of mercapto functionalized sepiolite and their application for sorption of lead and cadmium, Chem. Eng. J., 174, 436-444 (2011).   DOI
80 E. M. S. Azzam, Gh. Eshaq, A. M. Rabie, A. A. Bakr, A. A. Abd-Elaal, A. E. El Metwally, and S. M. Tawfik, Preparation and characterization of chitosan-clay nanocomposites for the removal of Cu(II) from aqueous solution, Int. J. Biol. Macromol., 89, 507-517 (2016).   DOI
81 K. Z. Setshedi, M. Bhaumik, S. Songwane, M. S. Onyango, and A. Maity, Exfoliated polypyrrole-organically modified montmorillonite clay nanocomposite as a potential adsorbent for Cr(VI) removal, Chem. Eng. J., 222, 186-197 (2013).   DOI
82 C. Bertagnolli, S. J. Kleinubing, and M. G. C. da Silva, Preparation and characterization of a Brazilian bentonite clay for removal of copper in porous beds, Appl. Clay Sci., 53, 73-79 (2011).   DOI
83 H. A. Talaat, N. M. El Defrawy, A. G. Abulnour, H. A. Hani, and A. Tawfik, Evaluation of heavy metals removal using some Egyptian clays, Int. Proc. Chem. Biol. Environ. Eng., 6, 37-42 (2011).
84 E. Padilla-Ortega, N. Medellin-Castillo, and A. Robledo-Cabrera, Comparative study of the effect of structural arrangement of clays in the thermal activation: Evaluation of their adsorption capacity to remove Cd(II), J. Environ. Chem. Eng., 8, 103850 (2020).   DOI
85 Z. Orolinova, A. Mockovciakova, S. Dolinska, and J. Briancin, EFFECT OF THERMAL TREATMENT ON THE BENTONITE PROPERTIES, Arch. Tech. Sci., 4, 49-56 (2012).   DOI
86 M. G. A. Vieira, A. F. A. Neto, M. L. Gimenes, and M. G. C. da Silva, Sorption kinetics and equilibrium for the removal of nickel ions from aqueous phase on calcined Bofe bentonite clay, J. Hazard. Mater., 177, 362-371 (2010).   DOI
87 V. Masindi and M. M. Ramakokovhu, The performance of thermally activated and vibratory ball milled South African bentonite clay for the removal of chromium ions from aqueous solution, Mater. Today Proc., 38, 964-974 (2021).   DOI
88 H. He, Q. Zhou, W. N. Martens, T. J. Kloprogge, P. Yuan, Y. Xi, J. Zhu, and R. L. Frost, Microstructure of HDTMA+-modified montmorillonite and its influence on sorption characteristics, Clays Clay Miner., 54, 689-696 (2006).   DOI
89 N. N. Herrera, J.-M. Letoffe, J.-P. Reymond, and E. Bourgeat-Lami, Silylation of laponite clay particles with monofunctional and trifunctional vinyl alkoxysilanes, J. Mater. Chem., 15, 863 (2005).   DOI
90 R. Fu, Y. Yang, Z. Xu, X. Zhang, X. Guo, and D. Bi, The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI), Chemosphere, 138, 726-734 (2015).   DOI
91 S. Bhowmick, S. Chakraborty, P. Mondal, W. Van Renterghem, S. Van den Berghe, G. Roman-Ross, D. Chatterjee, and M. Iglesias, Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism, Chem. Eng. J., 243, 14-23 (2014).   DOI
92 E. Ruiz-Hitzky, M. Darder, F. M. Fernandes, E. Zatile, F. J. Palomares, and P. Aranda, Supported Graphene from Natural Resources: Easy Preparation and Applications, Adv. Mater., 23, 5250-5255 (2011).   DOI
93 A. Okada and A. Usuki, Twenty Years of Polymer-Clay Nanocomposites, Macromol. Mater. Eng., 291, 1449-1476 (2006).   DOI
94 U. F. Alkaram, A. A. Mukhlis, and A. H. Al-Dujaili, The removal of phenol from aqueous solutions by adsorption using surfactant-modified bentonite and kaolinite, J. Hazard. Mater., 169, 324-332 (2009).   DOI
95 V. C. G. dos Santos, M. T. Grassi, and G. Abate, Sorption of Hg(II) by modified K10 montmorillonite: Influence of pH, ionic strength and the treatment with different cations, Geoderma., 237-238, 129-136 (2015).   DOI
96 A. M. Awad, S. M. R. Shaikh, R. Jalab, M. H. Gulied, M. S. Nasser, A. Benamor, and S. Adham, Adsorption of organic pollutants by natural and modified clays: A comprehensive review, Sep. Purif. Technol., 228, 115719 (2019).   DOI
97 W. Li, R. Zhou, R. Zhou, J. Weerasinghe, T. Zhang, A. Gissibl, P. J. Cullen, R. Speight, and K. (Ken) Ostrikov, Insights into amoxicillin degradation in water by non-thermal plasmas, Chemosphere, 132757 (2021).
98 T. O. Ajiboye, O. A. Oyewo, and D. C. Onwudiwe, Simultaneous removal of organics and heavy metals from industrial wastewater: A review, Chemosphere, 262, 128379 (2021).   DOI
99 A. Ramesh, H. Hasegawa, T. Maki, and K. Ueda, Adsorption of inorganic and organic arsenic from aqueous solutions by polymeric Al/Fe modified montmorillonite, Sep. Purif. Technol., 56, 90-100 (2007).   DOI
100 A. B. Dukic, K. R. Kumric, N. S. Vukelic, M. S. Dimitrijevic, Z. D. Bascarevic, S. V. Kurko, and L. Lj. Matovic, Simultaneous removal of Pb2+, Cu2+, Zn2+ and Cd2+ from highly acidic solutions using mechanochemically synthesized montmorillonite-kaolinite/TiO2 composite, Appl. Clay Sci., 103, 20-27 (2015).   DOI
101 L. Chen, P. Wu, M. Chen, X. Lai, Z. Ahmed, N. Zhu, Z. Dang, Y. Bi, and T. Liu, Preparation and characterization of the eco-friendly chitosan/vermiculite biocomposite with excellent removal capacity for cadmium and lead, Appl. Clay Sci., 159, 74-82 (2018).   DOI
102 A. C. S. Alcantara, M. Darder, P. Aranda, and E. Ruiz-Hitzky, Polysaccharide-fibrous clay bionanocomposites, Appl. Clay Sci., 96, 2-8 (2014).   DOI
103 M. Jiang, X. Jin, X.-Q. Lu, and Z. Chen, Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay, Desalination, 252, 33-39 (2010).   DOI
104 H. Mabrouki and D. E. Akretche, Diclofenac potassium removal from water by adsorption on natural and pillared clay, Desalin. Water Treat., 57, 6033-6043 (2016).   DOI
105 A. Maged, J. Iqbal, S. Kharbish, I. S. Ismael, and A. Bhatnagar, Tuning tetracycline removal from aqueous solution onto activated 2:1 layered clay mineral: Characterization, sorption and mechanistic studies, J. Hazard. Mater., 384, (2020) 121320.   DOI
106 H. Bhandari, S. Garg, and R. Gaba, Advanced nanocomposites for removal of heavy metals from wastewater, Macromol. Symp., 397, 2000337 (2021).   DOI
107 K. Buruga, H. Song, J. Shang, N. Bolan, T. K. Jagannathan, and K.-H. Kim, A review on functional polymer-clay based nanocomposite membranes for treatment of water, J. Hazard. Mater., 379, 120584 (2019).   DOI
108 J. Qu, Y. Yuan, Q. Meng, G. Zhang, F. Deng, L. Wang, Y. Tao, Z. Jiang, and Y. Zhang, Simultaneously enhanced removal and stepwise recovery of atrazine and Pb(II) from water using β-cyclodextrin functionalized cellulose: Characterization, adsorptive performance and mechanism exploration, J. Hazard. Mater., 400, 123142 (2020).   DOI
109 B. Szczepanik, Photocatalytic degradation of organic contaminants over clay-TiO2 nanocomposites: A review, Appl. Clay Sci., 141, 227-239, (2017).   DOI
110 H. Chen, J. Zhao, A. Zhong, and Y. Jin, Removal capacity and adsorption mechanism of heat-treated palygorskite clay for methylene blue, Chem. Eng. J., 174, 143-150 (2011).   DOI
111 X. Gu, L. J. Evans, and S. J. Barabash, Modeling the adsorption of Cd (II), Cu (II), Ni (II), Pb (II) and Zn (II) onto montmorillonite, Geochim. Cosmochim. Acta, 74, 5718-5728 (2010).   DOI
112 M. Malandrino, O. Abollino, A. Giacomino, M. Aceto, and E. Mentasti, Adsorption of heavy metals on vermiculite: Influence of pH and organic ligands, J. Colloid Interface Sci., 299, 537-546 (2006).   DOI
113 E. Padilla-Ortega, R. Leyva-Ramos, J. Mendoza-Barron, R. M. Guerrero-Coronado, A. Jacobo-Azuara, and A. Aragon-Pina, Adsorption of heavy metal ions from aqueous solution onto sepiolite, Adsorpt. Sci. Technol., 29, 569-584 (2011).   DOI
114 B. Anna, M. Kleopas, S. Constantine, F. Anestis, and B. Maria, Adsorption of Cd(II), Cu(II), Ni(II) and Pb(II) onto natural bentonite: study in mono- and multi-metal systems, Environ. Earth Sci., 73, 5435-5444 (2015).   DOI
115 Z. Tousova, B. Vrana, M. Smutna, J. Novak, V. Klucarova, R. Grabic, J. Slobodnik, J. P. Giesy, and K. Hilscherova, Analytical and bioanalytical assessments of organic micropollutants in the Bosna River using a combination of passive sampling, bioassays and multi-residue analysis, Sci. Total Environ., 650, 1599-1612 (2019).   DOI
116 M. Chauhan, V. K. Saini, and S. Suthar, Ti-pillared montmorillonite clay for adsorptive removal of amoxicillin, imipramine, diclofenac-sodium, and paracetamol from water, J. Hazard. Mater., 399, 122832 (2020).   DOI
117 K. Tohdee and L. Kaewsichan, Asadullah, Enhancement of adsorption efficiency of heavy metal Cu(II) and Zn(II) onto cationic surfactant modified bentonite, J. Environ. Chem. Eng., 6, 2821-2828 (2018).   DOI
118 X. Jin, S. Zha, S. Li, and Z. Chen, Simultaneous removal of mixed contaminants by organoclays - Amoxicillin and Cu(II) from aqueous solution, Appl. Clay Sci., 102, 196-201 (2014).   DOI
119 H. R. Fischer, L. H. Gielgens, and T. P. M. Koster, Nanocomposites from polymers and layered minerals, MRS Proc., 519, 117 (1998).   DOI
120 I. G. Wenten, K. Khoiruddin, A. K. Wardani, and I. N. Widiasa, Synthetic polymer-based membranes for heavy metal removal. In: A. M. Ismail, W. N. W. Salleh, N. Yusof, Synthetic Polymeric Membranes for Advanced Water Treatment, Gas Separation, and Energy Sustainability, 71-101 Elsevier (2020).
121 L. L. S. Silva, C. G. Moreira, B. A. Curzio, and F. V. da Fonseca, Micropollutant removal from water by membrane and advanced oxidation processes-A review, J. Water Resour. Prot., 9, 411-431 (2017).   DOI
122 M. Hadavifar, N. Bahramifar, H. Younesi, and Q. Li, Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups, Chem. Eng. J., 237, 217-228 (2014).   DOI
123 USEPA, National Primary Drinking Water Regulation Table, (2001).
124 I. Ogbu, K. Akpomie, A. Osunkunle, and S. Eze, Sawdust-kaolinite composite as efficient sorbent for heavy metal ions, Bangladesh J. Sci. Ind. Res., 54, 99-110 (2019).   DOI
125 S. T. Akar, Y. Yetimoglu, and T. Gedikbey, Removal of chromium (VI) ions from aqueous solutions by using Turkish montmorillonite clay: effect of activation and modification, Desalination, 244, 97-108 (2009).   DOI
126 Sunil, B. M., Faziludeen, and Saifiya, Removal of hexavalent chromium Cr (VI) by adsorption in blended lateritic soil, Adv. Environ. Res., 4, 197-210 (2015).   DOI
127 L. Mahouachi, T. Rastogi, W.-U. Palm, I. Ghorbel-Abid, D. Ben Hassen Chehimi, and K. Kummerer, Natural clay as a sorbent to remove pharmaceutical micropollutants from wastewater, Chemosphere, 258, 127213 (2020).   DOI
128 T. M. Berhane, J. Levy, M. P. S. Krekeler, N. D. Danielson, and A. Stalcup, Sorption-desorption of carbamazepine by palygorskite-montmorillonite (PM) filter medium, J. Hazard. Mater., 282, 183-193 (2015).   DOI
129 R. Antonelli, G. R. P. Malpass, M. G. C. da Silva, and M. G. A. Vieira, Adsorption of ciprofloxacin onto thermally modified bentonite clay: Experimental design, characterization, and adsorbent regeneration, J. Environ. Chem. Eng., 8, 104553 (2020).   DOI
130 E. Gonzalez-Pradas, M. Socias-Viciana, M. D. Urena-Amate, A. Cantos-Molina, and M. Villafranca-Sanchez, Adsorption of chloridazon from aqueous solution on heat and acid treated sepiolites, Water Res., 39, 1849-1857 (2005).   DOI
131 Y. Hu, C. Pan, X. Zheng, S. Liu, F. Hu, L. Xu, G. Xu, and X. Peng, Removal of ciprofloxacin with aluminum-pillared kaolin sodium alginate beads (CA-Al-KABs): kinetics, isotherms, and BBD model, Water, 12, 905 (2020).   DOI
132 I. A. Shabtai and Y. G. Mishael, Polycyclodextrin-clay composites: regenerable dual-site sorbents for bisphenol a removal from treated wastewater, ACS Appl. Mater. Interfaces., 10, 27088-27097 (2018).   DOI
133 X. Jin, M. Zheng, B. Sarkar, R. Naidu, and Z. Chen, Characterization of bentonite modified with humic acid for the removal of Cu (II) and 2,4-dichlorophenol from aqueous solution, Appl. Clay Sci., 134, 89-94 (2016).   DOI
134 A. Ely, M. Baudu, J.-P. Basly, and M. O. S. O. Kankou, Copper and nitrophenol pollutants removal by Na-montmorillonite/alginate microcapsules, J. Hazard. Mater., 171, 405-409 (2009).   DOI
135 T. M. Salem Attia, X. L. Hu, and D. Q. Yin, Synthesized magnetic nanoparticles coated zeolite for the adsorption of pharmaceutical compounds from aqueous solution using batch and column studies, Chemosphere, 93, 2076-2085 (2013).   DOI
136 A. Olad, M. Bastanian, and H. Bakht Khosh Hagh, Thermodynamic and kinetic studies of removal process of hexavalent chromium ions from water by using bio-conducting starch-montmorillonite/polyaniline nanocomposite, J. Inorg. Organomet. Polym. Mater., 29, 1916-1926 (2019).   DOI
137 B. K. Kizilduman, M. Alkan, M. Dogan, and Y. Turhan, Al-Pillared-Montmorillonite (AlPMt)/Poly(Methyl Methacrylate)(PMMA) Nanocomposites: The effects of solvent types and synthesis methods, Adv. Mater. Sci., 17, 5-23 (2017).
138 C.M. Futalan, C.-C. Kan, M.L. Dalida, K.-J. Hsien, C. Pascua, and M.-W. Wan, Comparative and competitive adsorption of copper, lead, and nickel using chitosan immobilized on bentonite, Carbohydr. Polym., 83, 528-536 (2011).   DOI
139 H. A. Sani, M. B. Ahmad, M. Z. Hussein, N. A. Ibrahim, A. Musa, and T. A. Saleh, Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions, Process Saf. Environ. Prot., 109, 97-105 (2017).   DOI
140 S. Piri, Z. A. Zanjani, F. Piri, A. Zamani, M. Yaftian, and M. Davari, Potential of polyaniline modified clay nanocomposite as a selective decontamination adsorbent for Pb(II) ions from contaminated waters; kinetics and thermodynamic study, J. Environ. Health Sci. Eng., 14, 20 (2016).   DOI
141 X. Wang, L. Yang, J. Zhang, C. Wang, and Q. Li, Preparation and characterization of chitosan-poly(vinyl alcohol)/bentonite nanocomposites for adsorption of Hg(II) ions, Chem. Eng. J., 251, 404-412 (2014).   DOI
142 T. H. Vu, T. M. V. Ngo, T. T. A. Duong, T. H. L. Nguyen, X. T. Mai, T. H. N. Pham, T. P. Le, and T. H. Tran, Removal of tetracycline from aqueous solution using nanocomposite based on polyanion-modified laterite material, J. Anal. Methods Chem., 2020, 1-9 (2020).
143 R. Malsawmdawngzela, Lalhmunsiama, and D. Tiwari, Novel and highly efficient functionalized bentonite for elimination of Cu2+ and Cd2+ from aqueous wastes, Environ. Eng. Res., 27, 210355 (2021).   DOI
144 V. A. A. Espana, B. Sarkar, B. Biswas, R. Rusmin, and R. Naidu, Environmental applications of thermally modified and acid activated clay minerals: Current status of the art, Environ. Technol. Innov., 13, 383-397 (2019).   DOI
145 K. G. Akpomie, and F. A. Dawodu, Acid-modified montmorillonite for sorption of heavy metals from automobile effluent, Beni-Suef Univ. J. Basic Appl. Sci., 5, 1-12 (2016).   DOI
146 C. Volzone, Retention of pollutant gases: Comparison between clay minerals and their modified products, Appl. Clay Sci., 36, 191-196 (2007).   DOI
147 R. R. Pawar, Lalhmunsiama, H C. Bajaj, and S.-M. Lee, Activated bentonite as a low-cost adsorbent for the removal of Cu(II) and Pb(II) from aqueous solutions: Batch and column studies, J. Ind. Eng. Chem., 34, 213-223 (2016).   DOI
148 Y. Bendezu Roca and W. S. Fuentes, Use of nanoclay as an adsorbent to remove Cu(II) from acid mine drainage (amd), Chem. Eng. Trans., 73, 241-246 (2019).
149 G. A. Kloster, M. Valiente, N. E. Marcovich, and M. A. Mosiewicki, Adsorption of arsenic onto films based on chitosan and chitosan/nano-iron oxide, Int. J. Biol. Macromol., 165 1286-1295 (2020).   DOI
150 M. Elmuntasir Ibrahim Ahmed, Selective Adsorption of Cadmium Species onto Organic Clay Using Experimental and Geochemical Speciation Modeling Data, Int. J. Eng. Technol., 8, 128-131 (2016).   DOI
151 K. Rao, M. Mohapatra, S. Anand, and P. Venkateswarlu, Review on cadmium removal from aqueous solutions, Int. J. Eng. Sci. Technol., 2, (2011).
152 Lalhmunsiama, D. Tiwari, and S.-M. Lee, Surface-functionalized activated sericite for the simultaneous removal of cadmium and phenol from aqueous solutions: Mechanistic insights, Chem. Eng. J., 283, 1414-1423 (2016).   DOI
153 L. Groisman, Sorption of organic compounds of varying hydrophobicities from water and industrial wastewater by long- and short-chain organoclays, Appl. Clay Sci., 24, 159-166 (2004).   DOI
154 D. Tiwari, W. Kim, M. Kim, S. K. Prasad, and S.-M. Lee, Organo-modified sericite in the remediation of phenol-contaminated waters, Desalin. Water Treat., 53, 446-451 (2015).   DOI
155 H. Hong, W.-T. Jiang, X. Zhang, L. Tie, and Z. Li, Adsorption of Cr(VI) on STAC-modified rectorite, Appl. Clay Sci., 42, 292-299 (2008).   DOI
156 H. He, Q. Tao, J. Zhu, P. Yuan, W. Shen, and S. Yang, Silylation of clay mineral surfaces, Appl. Clay Sci., 71, 15-20 (2013).   DOI
157 J. J. Trivino, M. Gomez, J. Valenzuela, A. Vera, and V. Arancibia, Determination of a natural (17β-estradiol) and a synthetic (17α-ethinylestradiol) hormones in pharmaceutical formulations and urine by adsorptive stripping voltammetry, Sens. Actuators B Chem., 297, 126728 (2019).   DOI
158 S. Bio and B. Nunes, Acute effects of diclofenac on zebrafish: Indications of oxidative effects and damages at environmentally realistic levels of exposure, Environ. Toxicol. Pharmacol., 78, 103394 (2020).   DOI
159 A. E. Burgos, T. A. Ribeiro-Santos, and R. M. Lago, Adsorption of the harmful hormone ethinyl estradiol inside hydrophobic cavities of CTA(+) intercalated montmorillonite, Water Sci. Technol. J. Int. Assoc. Water Pollut. Res., 74, 663-671 (2016).   DOI
160 W. Shen, H. He, J. Zhu, P. Yuan, Y. Ma, and X. Liang, Preparation and characterization of 3-aminopropyltriethoxysilane grafted montmorillonite and acid-activated montmorillonite, Sci. Bull., 54, 265-271 (2009).   DOI
161 M. Monasterio, J. J. Gaitero, E. Erkizia, A. M. Guerrero Bustos, L. A. Miccio, J. S. Dolado, and S. Cerveny, Effect of addition of silica- and amine functionalized silica-nanoparticles on the microstructure of calcium silicate hydrate (C-S-H) gel, J. Colloid Interface Sci., 450, 109-118 (2015).   DOI
162 A. M. Shanmugharaj, K. Y. Rhee, and S. H. Ryu, Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials, J. Colloid Interface Sci., 298, 854-859 (2006).   DOI
163 F. H. do Nascimento, D.M. de Souza Costa, and J. C. Masini, Evaluation of thiol-modified vermiculite for removal of Hg(II) from aqueous solutions, Appl. Clay Sci., 124-125, 227-235 (2016).   DOI
164 R. Malsawmdawngzela, D. Tiwari, and Lalhmunsiama, Facile synthesis and implications of novel hydrophobic materials: Newer insights of pharmaceuticals removal, Int. J. Biochem. Biophy., 58(6), 520-531 (2021).
165 R. Malsawmdawngzela, L. Siama, D. Tiwari, S.-M. Lee, and D.-J. Kim, Efficient and selective use of functionalized material in the decontamination of water: removal of emerging micro-pollutants from aqueous wastes, Environ. Technol. 1-15 (2021), https://doi.org/10.1080/09593330.2021.1994654.   DOI
166 X. Liang, J. Han, Y. Xu, L. Wang, Y. Sun, and X. Tan, Sorption of Cd2+ on mercapto and amino functionalized palygorskite, Appl. Surf. Sci., 322, 194-201 (2014).   DOI
167 H. Cui, Y. Qian, Q. Li, Z. Wei, and J. Zhai, Fast removal of Hg(II) ions from aqueous solution by amine-modified attapulgite, Appl. Clay Sci., 72, 84-90 (2013).   DOI
168 V. Marjanovic, S. Lazarevic, I. Jankovic-Castvan, B. Potkonjak, D. Janackovic, and R. Petrovic, Chromium (VI) removal from aqueous solutions using mercaptosilane functionalized sepiolites, Chem. Eng. J., 166, 198-206 (2011).   DOI
169 S. Yilmaz, T. Sahan, and A. Karabakan, Response surface approach for optimization of Hg (II) adsorption by 3-mercaptopropyl trimethoxysilane-modified kaolin minerals from aqueous solution, Korean J. Chem. Eng., 34, 2225-2235 (2017).   DOI
170 M. Taseidifar, F. Makavipour, R. M. Pashley, and A. F. M. M. Rahman, Removal of heavy metal ions from water using ion flotation, Environ. Technol. Innov., 8, 182-190 (2017).   DOI
171 J.-P. Chae, M. S. Park, Y.-S. Hwang, B.-H. Min, S.-H. Kim, H.-S. Lee, and M.-J. Park, Evaluation of developmental toxicity and teratogenicity of diclofenac using Xenopus embryos, Chemosphere, 120 (2015) 52-58.   DOI
172 L. Xiang, Z. Xie, H. Guo, J. Song, D. Li, Y. Wang, S. Pan, S. Lin, Z. Li, J. Han, and W. Qiao, Efficient removal of emerging contaminant sulfamethoxazole in water by ozone coupled with calcium peroxide: Mechanism and toxicity assessment, Chemosphere, 283, 131156 (2021).   DOI
173 M. Ershad, M. A. Ameer, and D. Vearrier, Ibuprofen Toxicity, In: StatPearls. StatPearls Publishing (2021).
174 O. E. Abdel-Gelil, and S. R. Mansour, Tetracycline and toxicity induced, Gastroenterol. Hepatol., 10, 177-179 (2019).
175 J. R. Rochester, Bisphenol A and human health: A review of the literature, Reprod. Toxicol., 42, 132-155 (2013).   DOI
176 Y. Bayrak, Y. Yesiloglu and U. Gecgel, Adsorption behavior of Cr(VI) on activated hazelnut shell ash and activated bentonite, Microporous Mesoporous Mater., 91, 107-110 (2006).   DOI
177 P.-H. Chang, Z. Li, J.-S. Jean, W.-T. Jiang, C.-J. Wang, and K.-H. Lin, Adsorption of tetracycline on 2:1 layered non-swelling clay mineral illite, Appl. Clay Sci., 67-68, 158-163 (2012).   DOI
178 T. Vengris, R. Binkien, and A. Sveikauskait, Nickel, copper and zinc removal from waste water by a modified clay sorbent, Appl. Clay Sci., 18, 183-190 (2001).   DOI
179 P. Pushpaletha, S. Rugmini and M. Lalithambika, Correlation between surface properties and catalytic activity of clay catalysts, Appl. Clay Sci., 30, 141-153 (2005).   DOI
180 H. Zaghouane-Boudiaf and M. Boutahala, Kinetic analysis of 2,4,5-trichlorophenol adsorption onto acid-activated montmorillonite from aqueous solution, Int. J. Miner. Process., 100, 72-78 (2011).   DOI
181 L. M. Daniel, R. L. Frost, and H. Y. Zhu, Edge-modification of laponite with dimethyl-octylmethoxysilane, J. Colloid Interface Sci., 321, 302-309 (2008).   DOI
182 M. Saravanan, S. Karthika, A. Malarvizhi, and M. Ramesh, Ecotoxicological impacts of clofibric acid and diclofenac in common carp (Cyprinus carpio) fingerlings: Hematological, biochemical, ionoregulatory and enzymological responses, J. Hazard. Mater., 195, 188-194 (2011).   DOI
183 R. Malsawmdawngzela, Lalhmunsiama, D. Tiwari, and S. Lee, Synthesis of novel clay-based nanocomposite materials and its application in the remediation of arsenic contaminated water, Int. J. Environ. Sci. Technol. 19 (2022), https://doi.org/10.1007/s13762-022-04506-z.   DOI
184 S. M. Lee, Thanhmingliana, and D. Tiwari, Hybrid materials precursor to natural clay in the attenuation of bisphenol A from aqueous solutions, J. Water Process Eng., 11, 46-54 (2016).   DOI
185 Y. Zou, X. Wang, A. Khan, P. Wang, Y. Liu, A. Alsaedi, T. Hayat, and X. Wang, Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: A review, Environ. Sci. Technol., 50, 7290-7304 (2016).   DOI
186 H. He, J. Duchet, J. Galy, and J.-F. Gerard, Grafting of swelling clay materials with 3-aminopropyltriethoxysilane, J. Colloid Interface Sci., 288, 171-176 (2005).   DOI
187 W. Carvalho, C. Vignado, and J. Fontana, Ni(II) removal from aqueous effluents by silylated clays, J. Hazard. Mater., 153, 1240-1247 (2008).   DOI
188 T. Phothitontimongkol, N. Siebers, N. Sukpirom, and F. Unob, Preparation and characterization of novel organo-clay minerals for Hg(II) ions adsorption from aqueous solution, Appl. Clay Sci., 43, 343-349 (2009).   DOI
189 S. I. Rathnayake, Y. Xi, R. L. Frost, and G. A. Ayoko, Environmental applications of inorganic-organic clays for recalcitrant organic pollutants removal: Bisphenol A, J. Colloid Interface Sci., 470, (2016) 183-195.   DOI
190 J. Wang, M. Gao, F. Ding, and T. Shen, Organo-vermiculites modified by heating and gemini pyridinium surfactants: Preparation, characterization and sulfamethoxazole adsorption, Colloids Surf. Physicochem. Eng. Asp., 546, 143-152 (2018).   DOI
191 H. He, L. Ma, J. Zhu, R.L. Frost, B. K. G. Theng, and F. Bergaya, Synthesis of organoclays: A critical review and some unresolved issues, Appl. Clay Sci., 100, 22-28 (2014).   DOI
192 E.-J. Cho, J.-K. Kang, J.-K. Moon, B.-H. Um, C.-G. Lee, S. Jeong, and S.-J. Park, Removal of triclosan from aqueous solution via adsorption by kenaf-derived biochar: Its adsorption mechanism study via spectroscopic and experimental approaches, J. Environ. Chem. Eng., 9, 106343 (2021).   DOI
193 B. Sarkar, Y. Xi, M. Megharaj, G. S. R. Krishnamurti, M. Bowman, H. Rose, and R. Naidu, Bioreactive Organoclay: A New Technology for Environmental Remediation, Crit. Rev. Environ. Sci. Technol., 42, 435-488 (2012).   DOI
194 R. Celis, C. Trigo, G. Facenda, M. D. C. Hermosin, and J. Cornejo, Selective Modification of Clay Minerals for the Adsorption of Herbicides Widely Used in Olive Groves, J. Agric. Food Chem., 55, 6650-6658 (2007).   DOI
195 V. A. Oyanedel-Craver and J. A. Smith, Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites, J. Hazard. Mater., 137, 1102-1114 (2006).   DOI
196 Q. H. Zeng, A. B. Yu, G. Q. (Max) Lu, and D. R. Paul, Clay-Based Polymer Nanocomposites: Research and Commercial Development, J. Nanosci. Nanotechnol., 5, 1574-1592 (2005).   DOI
197 Lalhmunsiama, R. R. Pawar, A. Chowdhury, Zirlianngura, and S. M. Lee, Removal of emerging micropollutants from water using hybrid material precursor to natural sericite clay, Int. J. Biochem. Biophy., 58 (2021).
198 Z. Dankova, A. Bekenyiova, I. Styriakova and E. Fedorova, Study of Cu(II) Adsorption by Siderite and Kaolin, Procedia Earth Planet. Sci., 15, 821-826 (2015).   DOI
199 F. Fu and Q. Wang, Removal of heavy metal ions from wastewaters: A review, J. Environ. Manage., 92, 407-418 (2011).   DOI
200 A. Soliemanzadeh and M. Fekri, The application of green tea extract to prepare bentonite-supported nanoscale zero-valent iron and its performance on removal of Cr(VI): Effect of relative parameters and soil experiments, Microporous Mesoporous Mater., 239, 60-69 (2017).   DOI
201 Y.-J. Shi, X.-H. Wang, Z. Qi, M.-H. Diao, M.-M. Gao, S.-F. Xing, S.-G. Wang, and X.-C. Zhao, Sorption and biodegradation of tetracycline by nitrifying granules and the toxicity of tetracycline on granules, J. Hazard. Mater., 191, 103-109 (2011).   DOI
202 M. Kozak and L. Domka, Adsorption of the quaternary ammonium salts on montmorillonite, J. Phys. Chem. Solids, 65, 441-445 (2004).   DOI
203 F. Bergaya and G. Lagaly, General introduction: clays, clay minerals, and clay science, Dev. Clay Sci., 1, 1-18 (2006).   DOI
204 G. Beall and M. Goss, Self-assembly of organic molecules on montmorillonite, Appl. Clay Sci., 27 179-186 (2004).   DOI
205 G. Gorrasi, M. Tortora, V. Vittoria, D. Kaempfer, and R. Mulhaupt, Transport properties of organic vapors in nanocomposites of organophilic layered silicate and syndiotactic polypropylene, Polymer, 44, 3679-3685 (2003).   DOI
206 J. Zhu, H. He, L. Zhu, X. Wen and F. Deng, Characterization of organic phases in the interlayer of montmorillonite using FTIR and 13C NMR, J. Colloid Interface Sci., 286, 239-244 (2005).   DOI
207 D. Merinska, Z. Malac, M. Pospisil, Z. Weiss, M. Chmielova, P. Capkova, and J. Simonik, Polymer/clay nanocomposites based on MMT/ODA intercalates, Compos. Interfaces, 9, 529-540 (2002).   DOI
208 D. Tiwari, Lalhmunsiama, S. I. Choi, and S. M. Lee, Activated sericite: An efficient and effective natural clay material for attenuation of cesium from aquatic environment, Pedosphere, 24, 731-742 (2014).   DOI
209 C. Quintelas, Z. Rocha, B. Silva, B. Fonseca, H. Figueiredo, and T. Tavares, Removal of Cd(II), Cr(VI), Fe(III) and Ni(II) from aqueous solutions by an E. coli biofilm supported on kaolin, Chem. Eng. J., 149, 319-324 (2009).   DOI
210 W. T. Tsai, K. J. Hsien, and J. M. Yang, Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution, J. Colloid Interface Sci., 275, 428-433 (2004).   DOI
211 R. Zhu, Q. Chen, Q. Zhou, Y. Xi, J. Zhu, and H. He, Adsorbents based on montmorillonite for contaminant removal from water: A review, Appl. Clay Sci., 123, 239-258 (2016).   DOI
212 V. K. Gupta, I. Ali, Suhas, and D. Mohan, Equilibrium uptake and sorption dynamics for the removal of a basic dye (basic red) using low-cost adsorbents, J. Colloid Interface Sci., 265, 257-264 (2003).   DOI
213 M. A. Khan, M. K. Uddin, R. Bushra, A. Ahmad, and S. A. Nabi, Synthesis and characterization of polyaniline Zr(IV) molybdophosphate for the adsorption of phenol from aqueous solution, React. Kinet. Mech. Catal., 113, 499-517 (2014).   DOI
214 Q. Wu, Z. Li, and H. Hong, Adsorption of the quinolone antibiotic nalidixic acid onto montmorillonite and kaolinite, Appl. Clay Sci., 74, 66-73 (2013).   DOI
215 A. A. Taha, M. A. Shreadah, H. F. Heiba, and A. M. Ahmed, Validity of Egyptian Na-montmorillonite for adsorption of Pb2+, Cd2+ and Ni2+ under acidic conditions: characterization, isotherm, kinetics, thermodynamics and application study: Adsorption of heavy metals under acidic conditions, Asia-Pac. J. Chem. Eng., 12, 292-306 (2017).   DOI
216 S. K. Behera, S.-Y. Oh, and H.-S. Park, Sorption of triclosan onto activated carbon, kaolinite and montmorillonite: Effects of pH, ionic strength, and humic acid, J. Hazard. Mater., 179, 684-691 (2010).   DOI
217 R. Sabouni and H. Gomaa, Photocatalytic degradation of pharmaceutical micro-pollutants using ZnO, Environ. Sci. Pollut. Res., 26, 5372-5380 (2019).   DOI
218 A. Tiwari, A. Shukla, Lalliansanga, D. Tiwari, and S. M. Lee, Nanocomposite thin films Ag0(NP)/TiO2 in the efficient removal of micro-pollutants from aqueous solutions: A case study of tetracycline and sulfamethoxazole removal, J. Environ. Manage., 220, 96-108 (2018).   DOI
219 H. Zeng, L. Wang, D. Zhang, F. Wang, V. K. Sharma, and C. Wang, Amido-functionalized carboxymethyl chitosan/montmorillonite composite for highly efficient and cost-effective mercury removal from aqueous solution, J. Colloid Interface Sci., 554, 479-487 (2019).   DOI
220 P.-H. Chang, Z. Li, W.-T. Jiang, C.-Y. Kuo, and J.-S. Jean, Adsorption of tetracycline on montmorillonite: influence of solution pH, temperature, and ionic strength, Desalin. Water Treat., 1-13, 1380-1392 (2014).
221 R. Mudzielwana, M.W. Gitari, and P. Ndungu, Performance evaluation of surfactant modified kaolin clay in As(III) and As(V) adsorption from groundwater: adsorption kinetics, isotherms and thermodynamics, Heliyon, 5, e02756 (2019).   DOI
222 F. Zermane, O. Bouras, M. Baudu, and J.-P. Basly, Cooperative coadsorption of 4-nitrophenol and basic yellow 28 dye onto an iron organo-inorgano pillared montmorillonite clay, J. Colloid Interface Sci., 350, 315-319 (2010).   DOI
223 Thanhmingliana, C. Lalhriatpuia, D. Tiwari, and S.-M. Lee, Efficient removal of 17β-estradiol using hybrid clay materials: Batch and column studies, Environ. Eng. Res., 21, 203-210 (2016).   DOI
224 X. Ren, Z. Zhang, H. Luo, B. Hu, Z. Dang, C. Yang, and L. Li, Adsorption of arsenic on modified montmorillonite, Appl. Clay Sci., 97, 17-23 (2014).   DOI
225 Y. Chu, M. A. Khan, S. Zhu, M. Xia, W. Lei, F. Wang, and Y. Xu, Microstructural modification of organo-montmorillonite with Gemini surfactant containing four ammonium cations: molecular dynamics (MD) simulations and adsorption capacity for copper ions, J. Chem. Technol. Biotechnol., 94, 3585-3594 (2019).   DOI
226 I. Hamadneh, R. Abu-Zurayk, B. Abu-Irmaileh, A. Bozeya, and A. H. Al-Dujaili, Adsorption of Pb(II) on raw and organically modified Jordanian bentonite, Clay Miner., 50, 485-496 (2015).   DOI
227 S. Dultz, J.-H. An, and B. Riebe, Organic cation exchanged montmorillonite and vermiculite as adsorbents for Cr(VI): Effect of layer charge on adsorption properties, Appl. Clay Sci., 67-68, 125-133 (2012).   DOI