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요      지

     본 연구에서는 가장 널리 사용되고 있는 지반모델인 Modified Cam-Clay 모델을 이용하여 피에조콘 관입 및 소

산시험의 수치해석을 수행하였다. Modified Cam-Clay 모델 및 관련 유한요소 식들을 피에조콘 관입의 대변형 현상을 

고려하기 위하여 Updated Lagrangian frame에서 formulation 하였다. 유한요소 해석 결과 얻어진 콘 관입저항치, 

간극수압 및 소산곡선을 양산지역 현장 시험결과와 비교 분석하였다. 수치해석 결과는 시험결과와 비교적 잘 부합하는 

것으로 고찰되었으나 보다 현실에 근접한 simulation을 위하여 연속적인 깊은 관입의 적절한 수치해석적 modeling이 

요구되는 것으로 고찰되었다.

  

  주요어 : Modified Cam-Clay model, 피에조콘, Updated Lagrangian formulation, 간극수압소산

Abstract

  In this study, the numerical analysis of piezocone penetration and dissipation tests has been conducted using the 

Modified Cam-Clay model, which is generally used in soil mechanics. The Modified Cam-Clay model and related 

mathematical equations in finite element derivation have been formulated in the Updated Lagrangian reference frame 

to take the large displacement and finite strain nature of piezocone penetration into consideration. The cone tip 

resistance, the pore water pressure, and the dissipation curve obtained from the finite element analysis have been 

compared and investigated with the experimental results from piezocone penetration test performed in Yangsan site. The 

numerical results showed good agreement with the experimental results; however, the better numerical simulation of the 

continuous and deep penetration needs further research.

   Keywords : Modified Cam-Clay model, Piezocone, Updated Lagrangian formulation, Dissipation
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1. Introduction

  

  The piezocone penetration test are now becoming a 

very popular and important tool for site 

characterization and ground contaminant study since it 

is relatively simple and fast; furthermore, many 

engineering properties can be obtained from the direct 

test results, i.e., cone tip resistance, pore water 

pressure, and sleeve friction. The reliability of the test 

results are, however, often influenced by many factors 

like soil characteristics, testing practice, and so on. To 

get more accurate results, many interpretation methods 

have been proposed, namely, semi-empirical approach, 

bearing capacity models, cavity expansion theory, strain 

path method, and numerical analysis. Finite element 

method among them has become an important method 

to analyze the complex cone penetration mechanism 

considering many influencing factors (Deborst and 

Vermeer, 1984; Kiousis et al., 1988; Sandven, 1990; Teh 

and Houlsby, 1991; Van den Berg et al., 1994; 

Abu-Farsakh et al., 1997). It is needless to say that the 

choice of a proper soil model is decisively important 

in numerical analysis. Abu-Farsakh et al. (1997) 

conducted a finite element analysis of piezocone 

penetration test using the Modified Cam-Clay model, 

which is most generally used in geotechnical 

engineering, and Updated Lagrangian formulation to 

capture large displacement and finite strain nature of 

piezocone penetration mechanism. The numerical results 

were compared with experimental results performed 

using calibration chamber test system. Their work 

showed good results under well controled condition; 

however, it is in doubt if the results of the finite 

element analysis would well match the results from 

field test.

  In this study, the finite element analysis of piezocone 

penetration and dissipation tests has been performed 

using the Modified Cam-Clay model based on 

Abu-Farsakh et al. (1997). The results have been 

compared with the experimental results of the field test 

conducted in Yangsan site. The numerical formulation, 

the field test, and the numerical and experimental 

results are described in following sections.

2. Numerical Formulation

  All mathematical equations adopted in this study 

including the Modified Cam-Clay model were 

formulated in the Updated Lagrangian reference frame 

to take large displacement and finite strain nature of 

piezocne penetration mechanism into account. This 

section briefly describes the numerical formulation 

based on Abu-Farsakh et al. (1997). 

  In the Updated Lagrangian formulation, it is 

postulated that a body occupies a volume V0, Vn, Vn+1 

at load increments 0, n, and n+1, respectively, 

corresponding to time t
o
, t

n
,
 

and t
n+1 

in the fixed 

cartesian coordinate system, and all quantities in the 

n+1 configuration are determined with respect to the 

previous n configuration. The reference configuration is 

updated after each incremental step. For example,

n+1 referred to the n configuration. The superscript s

or ' denotes the quantities in 'effective' concept in the 

following development,

  For finite deformations, elastoplastic constitutive 

equation for the solid skeleton is assumed to be 

(Voyiadjis and Kattan, 1989)

            
s
cdabcd

'
ab dD=σ
ο

                   (1)

  where 
ο
'
abσ  is effective corotational stress rate tensor, 

D is elastoplastic stress-strain matrix.

Spatial strain rate tensor ds is given by
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s

c,a
s
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1d ν+ν=
                     (2)

  where νs
 is velocity of solid particle. Effective 

corotational stress rate tensor 
ο
'
abσ is assumed to be
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is the second Piola-Kirchhoff stress tensor at 
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  where 
•

σ '
ab is effective Cauchy stress rate tensor, 

'
acσ  

is effective Cauchy stress tensor, 
∗s

acW  is  modified spin 

tensor, and 
''s

acW  is plastic spin tensor. The relation 

between Cauchy stress tensor ab
1n σ+

and second 

Piola-Kirchhoff stress tensor AB
1n
n S+

 is given by 

 AB
1n
n

s
B,b

s
A,a

1s
ab

1n SXXJ +−+ =σ ab
1ns

b,B
s

a,A
s

AB
1n
n XXJS σ= ++

(5)  

  where sJ  is corresponding Jacobian for solids and 
s

A,aX  is deformation gradient expressed as 
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                           (6)  

and spatial strain rate tensor ds is related to the 

material strain rate tensor 
•

εs  by  

 
•

ε= s
CD

s
D,d

s
C,c

s
cd XXd                                 (7)

  
  Using the above equations and after manipulation, 

the following relations are obtained.
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  where Pw is pore water pressure.

  Virtual work equation in Updated Lagrangian 

formulation is given by (Bathe, 1990)

                              

( ) RVdS 1nn

V AB
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nAB

1n
nn
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1

B,KnA,KnABn +=η
  (12)

  where u is displacement vector. Second Piola-

Kirchhoff stress tensor AB
1n
n S+

 at n+1 referred to the n 

configuration is related to Cauchy stress tensor AB
n σ  

by 

                                   

AB
n

AB
n

AB
1n
n SS ∆+σ=+

                             (13)   

  Using Eqs. (10), (11), and (13), and ABn S∆  expressed 

using Eqs. (8) and (9), the following virtual work 

equation is obtained.
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n
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  Theory of mixtures was used to explain the behavior 

of soils as a multiphase medium (Prevost, 1980). In 

theory of mixtures, soil is considered as a mixture of 

multiphase deformable medium of solid grains and 

water when saturated. Solid grain and water are 

respectively regarded as a continuum and as a fluid. 

The final coupled equation in theory of mixtures is 

derived using the law of conservation of mass and a 

certain flow law of water through the voids. The 

coupled equation in theory of mixtures in Updated 

Lagrangian formulation is obtained as (Kiousis et al., 

1988; Voyiadjis and Abu-Farsakh, 1997)
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s
k,j

s
k,i

s
ij XXC =             B

s
B,bb BXb =              (16)

  Where b is body force vector, wsK is permeability 

applied loads and surface tractions, V is volume, ε+1n
n  

 is total strain, and it is decomposed into linear strain

  ε+1n
n  is total strain, nonlinear strain ABn η . 

  where R1n+  is external virtual work due to the
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tensor in m/sec, wγ  is unit weight of water, and wρ

is intrinsic mass density of the water. Soil porosity wn  

is updated from at n configuration to at n+1 

configuration using Jaccobian of solid grains sJ .

           sw
n

w
1n

J
1

n1
n1

=
−
− +

                      (17)

  Eqs. (14) and (15) are implemented into a finite 

element formulation.

   Uu ⋅= h     WPw ⋅= N    
W

X
P

B,
B

w N=
∂
∂

       (18)  

  The above finite element discretization is used for 

displacement u and pore water pressure Pw. h is 

displacement shape function, N is pore water pressure 

shape function, U is nodal displacement, and W is 

nodal pore water pressure. The variation of linear and 

nonlinear strains are given by

 Ue L δ⋅=δ B       UNL δ⋅=δη B                   (19)

  where BL and BNL are linear and nonlinear 

strain-displacement matrices. Using Eqs. (14) and (19), 

the following expression is obtained.

                                      

ΦΩ n
n

n WU =∆+∆K          (20)

  In Eq. (20), the elastoplastic stiffness matrix Kn  is 

expressed as

                                 
s

n
T
NLnNLnLnn KKKKK +++=                        (21)  
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BBC        (23)

  where Ln K  is linear stiffness matrix, NLn K  is 

nonlinear matrix. 
s

n K  is nonlinear geometric stiffness 

matrix, and NLn C  is nonlinear matrix. The coupling 

matrix Ωn  in Eq. (20) is expressed as

                 

( ) VdXXJ n
ab

T
NLn

T
LnV

s
b,B

s
a,A

s
n n

NBB += ∫Ω  NN m=  (24)  

  where  

mT={1  1  0} for two dimension      

m
T
={1  1  1  0  0  0} for three dimension    (25)

In Eq. (20),

   

                                                 (26)

  Eq. (15) is expressed in finite element form thorugh

Galerkin's weighed residual method and Green's theory 

as  
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  where U∆  is incremental nodal displacement, W∆  is 

incremental nodal excess pore water pressure, and wP

is weighted residual (virtual pore pressure).

  Assembling Eqs. (20) and (27), the global coupled 

expression is obtained as 
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3. Constitutive Model and Solution Procedure

  In this section, the way the Modified Cam-Clay 



제2권 제3호 2001년 9월   93

model was used in this study is briefly described. The 

yield locus for the Modified Cam-Clay model is given 

by

 f(p, q, pc(εv
p))=M2p2-M2pcp+q2                 (33)

  where p and q are mean effective and deviatoric 

stresses, respectively. The above equation represents an 

ellipse in p-q plane as shown in Fig. 1. pc is strain 

hardening parameter representing the apex of the yield 

locus in p axis. If p≥pc/2, the model is either in the 

strain hardening region or at the critical state. If 

p<pc/2, the model is in the strain softening region 

which is not suitable for application here and has 

numerical difficulties (Chen, 1975; Chen and Mizuno, 

1990). To overcome the numerical difficulty in the 

treatment of the strain softening region, a perfectly 

plastic idealization that is compatible with the Modified 

Cam-Clay model or the use of critical state line as a 

perfectly plastic yield surface of the extended von 

Mises type can be introduced. Another approach is 

treating the Modified Cam-Clay yield surface in the 

strain softening region as a perfectly plastic yield 

surface (Chen, 1975). In this study, the second 

approach was used.

CSL

M
pc/2 pc

p

q

yield surface

Fig  1  Modified Cam Clay model

  Decomposing spatial strain rate d into elastic de and

plastic spatial stain rate d
p 

components, the corotational 

stress rate 
ο
'σ  can be obtained using Hooke's law as

    ( )pe' ddD −=σ
ο

  (34)

  where D
e
 is elastic constitutive matrix. Applying 

consistency condition and associated flow rule, the 

incremental stress-strain relationship of Eq. (34) is 

given by

    dDep' =σ
ο

  (35)

  where the elastoplastic constitutive matrix D
ep

 is 

expressed as
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  Using the relations, ( )( )p
vcc

p
v /pp/f/f ε∂∂∂∂=ε∂∂ , 

pMp/f 2
c −=∂∂ , then 

p
vc0c dp)/()e1(dp ε⋅κ−λ+= , and

applying chain rule to '/f σ∂∂ , H
p
 can be expressed as
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)e1(ppMH 0c
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                    (38)

  where '/f σ∂∂  is expressed in terms of deviatoric 

Cauchy stresses.

  The rest of this section interprets the solution 

procedure using the numerical formulation derived 

above. To get a converged solution, total load (or 

displacement) was applied incrementally and iterations 

were performed within each increment. The full 

Newton-Raphson iterative method was used to obtain 

the converged solution of the nonlinear set of 

equations within the iterative loop for each load 

increment depending on a specified required accuracy.  
   

  The solution procedure is as usual finite element 

method except the correction of stress point related to 

yield surface.

  The accumulation of numerical errors in stress 

calculation due to the linearization of the nonlinear 

equations causes stress point to drift away from yield 

surface. Based on classical theory of plasticity, stress 

point can not be outside yield surface. Therefore, the 

following correction was made to move the point back 



94  한국지반환경공학회 논문집

to yield surface in the following way.

- Evaluate the yield function at initial stress, fo=f(σ). If 

fo<0, the initial stress state is inside the yield surface 

in elastic region. Compute the elastic stress change as 

Δσe=DeΔε, where De is elastic stiffness matrix.

- Evaluate yield function at the new stress state, fl=f(σ

+Δσe). If fl<0, the stress state is inside the yield 

surface and no correction is needed. If fl>0, the stress 

state crosses the yield surface as described in Fig. 2.

   During the transition from elastic to plastic 

conditions, the factor α at which yield begins is 

determined such that f(σ+αΔσe)=0. Using a linear 

interpolation approximation, the first estimate of αo 

is αo=-fo/(fl-fo). Then f(σ+αΔσe)=f2≠0 due to 

nonlinearity in the yield function f. Using the 

truncated Taylor series, then δα=-f2/(a
TΔσe), where 

aT=∂f/∂σ. The improved value of α becomes

     α=αo+δα            (39)

  Having computed the intersection point σ+αΔσe, 

the remaining portion of the strain increment (1-α)Δ

εi is treated as elastoplstic. Since iterative incremental 

stress is calculated from iterative incremental strain and 

constitutive matrix D rather than performing actual 

integration, sub-incrementation was used to improve 

the accuracy of the finite element analysis and to 

minimize the accumulated errors. 

Fig  2  Crossing yield surface 

(Abu Farsakh et al , 1997)

4. Site Introduction and Piezocone 

Penetration Test

  The piezocone penetration and dissipation tests  have 

been conducted in Yangsan site, in the vicinity of 

Pusan city. The site consists of sedimented fine soils 

near Nak-dong river and is currently undergoing 

large-scale industrial and housing area development.

  The soil profile of the test site is composed of sandy 

and silty soil layer of about 2.0 m thick on top and 

quite homogeneous clay layer to the depth of 25 ～ 30 

m. The clay maybe unstable as natural water content is 

larger than liquid limit in all depth. According to 

laboratory test results, the clay was classified in CL 

(clay with low plasticity) and it has been also found 

that natural water content is 54 % ～ 70 %, liquid 

limit is 42 % ～ 57 %, plastic index is 20 % ～ 27 %, 

specific gravity is 2.70 ～ 2.72, unit weight is 15.4 ～ 

16.6 kN/m
3
, natural void ratio is 1.6 ～ 1.9, coefficient 

of consolidation is 8 × 10-2 ～ 2 × 10-1 cm2/min, 

permeability coefficient is 2.0 × 10-7 ～ 7.5 × 10-8 

cm/sec, the clay consists of illite (45.8 ～ 56.1 %), 

kaolinite (16.0 ～ 24.7 %), and smectite (1.8 ～ 10.0 %), 

and the undrained strength gradually increases with 

depth from 15 kPa to 40 kPa. The physical properties 

of the clay and the results of triaxial and oedometer 

tests can be found in Kim, D.H. et al. (2000) and Kim, 

G.S. et al. (2000).

  The piezocone used in this study has 60°cone tip 

and 10 cm
2 base area with 150 cm2 friction sleeve and 

filter element located behind the cone tip (above the 

cone base). This u2 type filter element is very 

important for the unequal area correction (Kurup, 

1993). The cone penetrates ground using pushing rods 

connected to loading system. Cone tip resistance qc, 

sleeve friction fs, and pore water pressure u2 were 

measured. In addition to the penetration test, 

dissipation of generated pore water pressure with time 

were measured to evaluate the drainage properties of 

the soil. The penetration test was conducted at the 

standard rate of 2 cm/sec. 
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5. Numerical and Experimental Results

  The piezocone penetration was simulated by imposing 

incremental nodal vertical displacements of the nodes 

representing the cone tip boundary until failure is 

achieved. The vertical displacement was applied at the 

rate of 2.0 cm/sec and the piezocone penetrometer was 

assumed to be infinitely stiff. No tensile stresses were 

allowed to develop along the centerline boundaries. The 

excess pore pressure was obtained assuming undrained 

condition during penetration.

  There are several approaches to model the interface 

friction. Goodman et al. (1968) introduced a 

zero-thickness interface element. The element 

formulation is derived on the basis of relative nodal 

displacements of the solid elements adjacent to the 

interface element. Zienkiewicz et al. (1970) used a 

continuous solid elements as interface elements with a 

simple nonlinear material property for shear and 

normal stresses, assuming uniform strain in the 

thickness direction. Katona (1983) used the constraint 

approach with the principle of virtual work to derive 

an interface model. The use of thin-layer interface 

elements is also considered  (Desai et al. 1984). In this 

study, a simple constraint approach (Katona, 1983) was 

used to model the soil-piezocone interface friction, in 

which the Mohr-Coulomb frictional model is used to 

define the sliding potential. During the piezocone 

penetration, the element nodes along the piezocone 

centerline get into contact with the piezocone boundary 

surface in sequence, rather than simultaneously. In 

addition, the penetration of the piezocone at a rate of 

2 cm/sec makes it difficult to use interface elements 

between the soil and piezocone surface, due to the fact 

that the interface elements can not be stretched to 

infinity. Therefore, the simple constraint approach by 

Katona (1983) at the nodal level was adapted in this 

study in order to account for the soil-piezocone 

interface friction. At the beginning of penetration, all 

the nodes along the inclined conical surface and along 

the piezocone shaft are prevented from sliding along 

the surface and are forced to move vertically with the 

cone boundary incremental movement until the sliding 

potential occurs. The sliding potential is reached when 

the tangent frictional forces of the nodes along the 

boundary surface reach the allowable friction forces.

  Following that, the nodes are allowed to slide along 

the conical surface and along the cone shaft surface. The 

coefficient of soil-penetrometer interface friction was taken 

as 0.25, which corresponds to an angle of friction of 14. 

λ=0.21, κ=0.042, ν=0.3, M=1.2 were used as model 

parameter values. Details of the lab. tests can be referred 

to Kim, D.H. et al. (2000) and Kim, G.S. et al. (2000).

  The piezocone penetration was treated as an 

axi-symmetric boundary problem. The 8-noded 

isoparametric plane strain element was used. The use of 

isoparametric elements has an advantage of their 

capability in describing the curved boundaries in the 

deformed configuration. A number of trial finite element 

meshes, resulting in the separation between piezocone 

and the soil just above the conical tip and in 

unreasonable negative pore water pressure, were studied 

with different mesh sizes. The numerical result converges 

to a unique and reasonable solution with 356.8 mm × 

535.2 mm mesh size and four elements along the inclined 

conical surface. Fig. 3 shows the finite element mesh.

Fig  3  Finite Element Mesh

  In the numerical analysis, the total depth of 

penetration was divided into sub-layers and the steady 

value of cone tip resistance resulting from the finite 

element analysis of each layer was obtained, then the 
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steady value of each layer was smoothly connected to 

each other as cone tip resistance profile. The same 

procedure was applied to pore water pressure profile.

  This technique was used to avoid tremendous 

numerical errors resulting from the numerical 

simulation of the deep and continuous penetration in 

one step, and successfully worked in this study but 

more accurate simulation corresponding to real 

penetration situation needs further research. 

  Figs. 4, 5, and 6 show the results of the finite 

element analysis and the experimental results of the 

piezocone penetration and dissipation tests conducted 

in Yangsan site. In Figs. 4 and 5, the numerical results 

were presented below 5 m depth since the top crust 

layer was excluded in the numerical simulation. The 

peak region like in Fig. 4 generally appears to initiate 

penetration even without the top crust. Fig. 7 indicates 

the variation of OCR with depth and Figs. 8 to 10 

represents the contours of octahedral shear stress, 

octahedral shear strain, and excess pore water pressure.
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Fig  7  Variation of OCR 

(Kim, D H  et al , 1999)

Fig  6  Dissipation curve at 19 m depth

Fig  5  Pore water pressure profile
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Fig  8  Octahedral Shear Stress Contour
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Fig  10  Excess Pore Water Pressure Contour

  As shown in Figs. 4, 5, and 6, the numerical results 

showed good agreement with the experimental data. 

One reason is that the clay at the site is quite 

homogeneous. It has been proven during the trimming 

of samples. The other reason is the use of the 

Modified Cam-Clay model and the theory of mixtures. 

  Theory of mixtures successfully simulated especially 

the dissipation behavior of the clay in the site as 

shown in Fig. 6.  It is well known that the Modifed 

Cam-Clay model usually gives good prediction for 

normally consolidated clays. The OCR 

(overconsolidation ratio) of the site, as shown in Fig. 7, 

appeared near unity in all depth and even less than 

unity for the depth below 12 m, which corresponds to 

the result of the research by Tananka et al. (1999). This 

can be explained by the fact that the clay is 

underconsolidated maybe due to the sudden rise of sea 

level following the Ice Age, or the fact that there are 

two distinct layers of the clays at the site, where 

although the mineralogy is the same, the 

microstructure varies, namely, the upper layer contains 

large aggregates with bridges in between, while the 

lower layer is composed of mostly single particles with 

little aggregation, and much less bridging (Locat and 

Tananka, 1999). This maybe the reason that the 

numerical results using the Modified Cam-Clay model, 

as shown in Fig. 4, showed little better-match with the 

experimental results in the upper layer since the 

microstructure in the upper layer shows more clayey 

characteristics. 

  In Fig. 5, the numerical results are a little bit larger 

than the experimental data, which maybe the sluggish 

behavior of pore water pressure due to incomplete 

saturation and/or clogging of the filter element.

  When penetration stops for dissipation test in heavily 

overconsolidated clay, it is possible for negative excess 

pore water pressure measured behind cone tip (u2 

type) to occur at the initial part of excess pore water 

pressure profile (Abu-Farsakh et al., 1997; Kim and 

Lee, 2000b) but no negative values were measured 

experimentally and calculated numerically in this study, 

which is because the soil is not under heavily 
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overconsolidated. For overconsolidated clay, it is also 

possible for pore water pressure measured behind cone 

tip (u2 type) to initially increase before dissipation 

(Kim and Lee, 2000a). In Fig. 6, no obvious initial 

increase of pore water pressure was recorded, that 

confirms the clay is not under overconsolidated state.

  Actually, when penetration stops, pore water 

pressure is influenced by many factors such as stress 

redistribution, stress relaxation, and viscous and 

dynamic effects (Kurup, 1993). More frequent reading 

of measurement and dissipation test at various depth, 

therefore, might have given interesting results, 

especially for the very initial stage of dissipation.

7. Summary and Conclusions

  In this study, the finite element analysis of piezocone 

penetration and dissipation tests has been performed. 

The results from the finite element analysis have been 

compared with the experimental results of field 

piezocone penetration and dissipation tests conducted 

in Yangsan site. The Modified Cam-Clay model was 

used to simulate the plastic behavior of the clay based 

on Abu-Farsakh et al. (1997). All mathematical 

equations were formulated in the Updated Lagrangian 

reference frame to reflect the large displacement and 

finite strain nature of cone penetration. The results of 

the numerical analysis showed good agreement with 

the experimental results all in cone tip resistance 

profile, pore water pressure profile, and dissipation 

behavior. The use of the Modifed Cam-Clay model, 

theory of mixtures, and Updated Lagrangian 

formulation gave this good result. It needs to be noted 

that the Modifed Cam-Clay model was successfully 

applied to this site, of which OCR value is near unity.
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