DOI QR코드

DOI QR Code

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory

한계 상태 기반 수정 Modified Cam Clay 파괴면

  • Woo, Sang Inn (Dept. of Civil and Environmental Engrg., Hannam Univ.)
  • 우상인 (한남대학교 토목환경공학전공)
  • Received : 2020.02.28
  • Accepted : 2020.04.14
  • Published : 2020.04.30

Abstract

This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

본 논문은 점성토의 응력-변형률 관계를 모사하기 위해 한계 상태 이론을 기반으로 하여 수정한 Modified Cam-Clay 파괴면을 제안한다. 평균유효응력과 von Mises 응력의 공간에서 타원형상의 파괴면을 가지는 Modified Cam-Clay 모델의 경우, 강성 및 발달법칙 미적용시, 비배수 전단조건하에 한계상태 평균유효응력은 선행압밀 평균유효응력의 절반이 되며, 이는 실제 점성토의 거동과 차이가 있다. 본 연구에서는 선행압밀 평균유효응력은 점성토의 압밀이력으로 정량화되고, 한계상태 평균유효응력은 점성토의 현재 간극비로 산정되어, 이 둘간의 비율이 고정되지 않는 찌그러진 형태의 파괴면을 제안한다. 제안된 파괴면을 항복평면으로 가정하고, 비배수 삼축압축 거동을 모사한 결과, 실내 실험 결과와 유사한 결과를 얻을 수 있었다

Keywords

References

  1. Chakraborty, T., Salgado, R., and Loukidis, D. (2013), "A Twosurface Plasticity Model for Clay", Computers and Geotechnics, 49, pp.170-190. https://doi.org/10.1016/j.compgeo.2012.10.011
  2. Chang, M., Teh, C. I., and Cao, L. (1999), "Critical State Strength Parameters of Saturated Clays from the Modified Cam Clay Model", Canadian Geotechnical Journal, NRC Research Press Ottawa, Canada, 36, pp.876-890. https://doi.org/10.1139/t99-050
  3. Chen, Y. N. and Yang, Z. X. (2017), "A Family of Improved Yield Surfaces and their Application in Modeling of Isotropically Over-consolidated Clays", Computers and Geotechnics, Elsevier Ltd, 90, pp.133-143. https://doi.org/10.1016/j.compgeo.2017.06.007
  4. Dafalias, Y. F. and Herrmann, L. R. (1986), "Bounding Surface Plasticity. II: Application to Isotropic Cohesive Soils", Journal of Engineering Mechanics, Vol.112, No.12, pp.1263-1291. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:12(1263)
  5. van Eekelen, S. and van Den Berg, P. (1994), "The Delft Egg Model, A Constitutive Model for Clay", DIANA Computational Mechanics '84, pp.103-116.
  6. Gasparre, A. (2005), "Advanced Laboratory Characterisation of London Clay", Imperial Colleage London.
  7. Gens, A. (1982), "Stress-strain and strength characteristics of a low plasticity clay", University of London, Imperial College.
  8. Hattab, M. (2011), "Critical State Notion and Microstructural Considerations in Clays", Comptes Rendus Mecanique, Elsevier Masson SAS, 339, pp.719-726. https://doi.org/10.1016/j.crme.2011.07.007
  9. Lee, S. and Oh, S. (1994), "An Anisotropic Elasto-Plastic Constitutive Model Based on the Generalized Isotropic Hardening Rule for Clays", Journal of the Korean Geotechnical Society, Vol.10, No.3, pp.17-32.
  10. Lee, S., Oh, S., and Kwon, G. (1992), "A Constitutive Model Using the Spacing Ratio of Critical State", Journal of the Korean Geotechnical Society, Vol.8, No.2, pp.45-57.
  11. McCarron, W. O. and Chen, W. F. (1987), "Application of a Bounding Surface Model to Boston Blue Clay", Computers and Structures, Vol.26, No.6, pp.887-897. https://doi.org/10.1016/0045-7949(87)90105-2
  12. Nakai, T. and Matsuoka, H. (1986), "A Generalized Elastoplastic Constitutive Model for Clay in Three-dimensional Stresses", Soils and Foundations, Vol.26, No.3, pp.81-93. https://doi.org/10.3208/sandf1972.26.3_81
  13. Pestana, J. M. and Whittle, A. J. (1999), "Formulation of a Unified Constitutive Model for Clays and Sands", International Journal for Numerical and Analytical Methods in Geomechanics, 23, pp.1215-1243. https://doi.org/10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F
  14. Pestana, J. M., Whittle, A. J., and Salvati, L. A. (2002), "Evaluation of a Constitutive Model for Clays and Sands: Part II-clay behaviour", International Journal for Numerical and Analytical Methods in Geomechanics, Vol.26, No.11, pp.1123-1146. https://doi.org/10.1002/nag.238
  15. Roscoe, K. and Burland, J. (1968), "On the generalized stress-strain behavior of 'wet' clay", Engineering Plasticity, 1, pp.535-609.
  16. Salgado, R. (2008), The Engineering of Foundations, McGraw-Hill.
  17. Schofield, A. and Wroth, P. (1968), Critical State Soil Mechanics. McGraw-Hill.
  18. Taiebat, M., Dafalias, Y. F., and Peek, R. (2010), "A Destructuration Theory and its Application to SANICLAY Model", International Journal for Numerical and Analytical Methods in Geomechanics, 34, pp.1009-1040. https://doi.org/10.1002/nag.841
  19. Yao, Y. P., Sun, D. A., and Matsuoka, H. (2008), "A unified constitutive model for both clay and sand with hardening parameter independent on stress path", Computers and Geotechnics, Vol.35, No.2, pp.210-222. https://doi.org/10.1016/j.compgeo.2007.04.003