• Title/Summary/Keyword: modeling and simulation

Search Result 6,436, Processing Time 0.039 seconds

End-to-end system level modeling and simulation for medium-voltage DC electric ship power systems

  • Zhu, Wanlu;Shi, Jian;Abdelwahed, Sherif
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.1
    • /
    • pp.37-47
    • /
    • 2018
  • Dynamic simulation is critical for electrical ship studies as it obtains the necessary information to capture and characterize system performance over the range of system operations and dynamic events such as disturbances or contingencies. However, modeling and simulation of the interactive electrical and mechanical dynamics involves setting up and solving system equations in time-domain that is typically time consuming and computationally expensive. Accurate assessment of system dynamic behaviors of interest without excessive computational overhead has become a serious concern and challenge for practical application of electrical ship design, analysis, optimization and control. This paper aims to develop a systematic approach to classify the sophisticated dynamic phenomenon encountered in electrical ship modeling and simulation practices based on the design intention and the time scale of interest. Then a novel, comprehensive, coherent, and end-to-end mathematical modeling and simulation approach has been developed for the latest Medium Voltage Direct Current (MVDC) Shipboard Power System (SPS) with the objective to effectively and efficiently capture the system behavior for ship-wide system-level studies. The accuracy and computation efficiency of the proposed approach has been evaluated and validated within the time frame of interest in the cast studies. The significance and the potential application of the proposed modeling and simulation approach are also discussed.

Modeling and Simulation of Emergent Evacuation Using Affordance-based FSA Models (어포던스 기반 FSA모델을 이용한 대피자 행동 모델링 및 시뮬레이션)

  • Joo, Jae-Koo;Kim, Nam-Hun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.96-104
    • /
    • 2011
  • Modeling and simulation of human-involved complex systems pose challenges to representing human decision makings into logical systems because of the nondeterministic and dynamic nature of human behaviors. In modeling perspectives, human's activities in systems can increase uncertainty and complexity, because he or she can potentially access all other resources within the system and change the system states. To address all of these human involvements in the system, this research suggests applying the Finite State Automata (FSA)-based formal modeling of human-involved systems that incorporates the ecological concept of affordances to an evacuation simulation, so that human behavioral patterns under urgent and dynamic emergency situations can be considered in the real-time simulation. The proposed simulation methodologies were interpreted using the warehouse fire evacuation simulation to clarify the applicability of the proposed methodology. This research is expected to merge system engineering technologies and human factors, and come out to the new predictive modeling methodology for disaster simulations. This research can be applied to a variety of applications such as building layout designs and building access control systems for emergency situations.

Digital Manufacturing based Modeling and Simulation of Production Process in Subassembly Lines at a Shipyard (디지털 생산을 기반으로 한 조선 소조립 공정 모델링 및 시뮬레이션)

  • 이광국;신종계;우종훈;최양렬;이장현;김세환
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2003.11a
    • /
    • pp.185-192
    • /
    • 2003
  • Digital Manufacturing-based production could be very effective in shipbuilding in order to save costs and time, to increase safety for workers, and to prevent bottleneck processes in advance. Digital shipbuilding system, a simulation-based production tool, is being developed to achieve such aspects in Korea. To simulate material flow in a subassembly line at a shipyard, the product, process and resources was modeled for the subassembly process which consisted of several sub-processes such as tack welding, piece alignment, tack welding, and robot welding processes. The analysis and modeling were carried out by using the UML(Unified Modeling Language), an object-oriented modeling method as well as IDEF(Integration DEFinition), a functional modeling tool. Initially, the characteristics of the shop resources were analyzed using the shipyard data, and the layout of the subassembly line was designed with the resources. The production process modeling of the subassembly lines was performed using the discrete event simulation method. Using the constructed resource and process model, the productivity and efficiency of the line were investigated. The number of workers and the variations In the resource performance such as that of a new welding robot were examined to simulate the changes in productivity. The bottleneck process floated according to the performance of the new resources. The proposed model was viewed three-dimensionally in a digital environment so that interferences among objects and space allocations for the resources could be easily investigated

  • PDF

Airborne LiDAR Simulation Data Generation of Complex Polyhedral Buildings and Automatic Modeling (다양한 건물의 항공 라이다 시뮬레이션 데이터 생성과 자동 모델링)

  • Kim, Jung-Hyun;Jeon, Young-Jae;Lee, Dong-Cheon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.235-238
    • /
    • 2010
  • Since the mid 1990s airborne LiDAR data have been widely used, automation of building modeling is getting a central issue. LiDAR data processing for building modeling is involved with extracting surface patch elements by segmentation and surface fitting with optimal mathematical functions. In this study, simulation LiDAR data were generated with complex polyhedral roofs of buildings and an automatic modeling approach was proposed.

  • PDF

A Study on Modeling Automation of Human Engineering Simulation Using Multi Kinect Depth Cameras (여러 대의 키넥트 뎁스 카메라를 이용한 인간공학 시뮬레이션 모델링 자동화에 관한 연구)

  • Jun, Chanmo;Lee, Ju Yeon;Noh, Sang Do
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.1
    • /
    • pp.9-19
    • /
    • 2016
  • Applying human engineering simulation to analyzing work capability and movements of operators during manufacturing is highly demanded. However, difficulty in modeling digital human required for simulation makes engineers to be reluctant to utilize human simulation for their tasks. This paper addresses such problem on human engineering simulation by developing the technology to automatize human modeling with multiple Kinects at different depths. The Kinects enable us to acquire the movements of digital human which are essential data for implementing human engineering simulation. In this paper, we present a system for modeling automation of digital human. Especially, the system provides a way of generating the digital model of workers' movement and position using multiple Kinects which cannot be generated by single Kinect. Lastly, we verify the effects of the developed system in terms of modeling time and accuracy by applying the system to four different scenarios. In conclusion, the proposed system makes it possible to generate the digital human model easily and reduce costs and time for human engineering simulation.

Certified Missile Rounds Concepts Using Modeling and Simulation (M&S를 활용한 유도탄 검사주기 및 수량 설정 방안)

  • Kim, Byung-Soo;Lee, Kye-Shin;Kim, Dong-Seok;Moon, Ki-Sung
    • Journal of the Korea Society for Simulation
    • /
    • v.18 no.4
    • /
    • pp.95-105
    • /
    • 2009
  • In this study, we presented the periodic inspection method of the Certified Missile Round Concepts usuing M&S(Modeling and Simulation) techniques. Firstly, We drew up the scenario from the application concepts and the predicted dormant reliability Secondly, we performed the modeling for a simulation program based on the scenario. Lastly we embodied the simulation program. After comparing and examining the difference between the simulation results and the theoretical estimates, we present the best periodic inspection plan for achieving the probability of success.

Traffic Flow Analysis Methodology Using the Discrete Event Modeling and Simulation (이산 사건 모델링 및 시뮬레이션을 이용한 교통 흐름 분석 방법론)

  • 이자옥;지승도
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.1
    • /
    • pp.101-116
    • /
    • 1996
  • Increased attention has been paid in recent years to the need of traffic management for alleviating urban traffic congestion. This paper presents a discrete event modeling and simulation framework for analyzing the traffic flow. Traffic simulation models can be classified as being either microscopic and macroscopic models. The discrete event modeling and simulation technique can be basically employed to describe the macroscopic traffic simulation model. To do this, we have employed the System Entity Structure/Model Base (SES/MB) framework which integrates the dynamic-based formalism of simulation with the symbolic formalism of AI. The SES/MB framework supports to hierarchical, modular discrete event modeling and simulation environment. We also adopt the Symbolic DEVS (Discrete Event System Specification) to developed the automated analysis methodology for generating optimal signal light policy. Several simulation tests will demonstrates the techniques.

  • PDF

Resource Based Simulation in Semiconductor Business (반도체 R&D BPR 시뮬레이션)

  • 김원경;이종복
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.31-35
    • /
    • 2001
  • Simulation --- The ideal tool for BPR. Work now and CASE tools are static modeling tools. Based on our own customers surveys, we have discovered that the use of process modeling tools thus far has focused on modeling the current(What-Is) state of a business. We have found that 90 percent of reengineering projects, the modeling tools of choice have been flowcharting tools. Static models offer help in understanding the overall nature of an existing process. However, static models can not really help you see the step by step motions towards completion of your goals. In static modeling, you see two pictures in time, usually taken at the current state and final state models of your reengineering project. Static models are usually not object oriented, therefore can not show facility or office layout and movement of entities and objects throughout the facility. However, this does not mean that static modeling does not have its application nor add value to the user as in a few success stories. Simulation helps the team analyze the complex aspects of the project. Many times a plan that looks good on paper might turn out entirely different when put into action. Therefore, simulation helps you look at how situations might work before actual implementation. In particular, computer simulation models help you view a reengineered condition before they are rolled-out. Items such as a lead time and resource allocation.

  • PDF

A Systematic Construction Process of 3D Database for Realtime Virtual Simulation of Transportation Equipments (수송장비의 실시간 가상 시뮬레이션을 위한 3차원 데이터베이스의 체계적인 구축 프로세스)

  • Kim, Bo-Hyun
    • IE interfaces
    • /
    • v.16 no.2
    • /
    • pp.258-267
    • /
    • 2003
  • Recently, virtual reality technologies have been rapidly developed and realtime virtual simulation methods have been extensively employed for several application areas such as game, sports, manufacturing, military, and so on. A 3D database in realtime virtual simulation plays a key role because it makes users feel reality in virtual space. In a application view of 3D database, a systematic construction approach is required to reduce its construction time and increase its quality. However, many researches have been mostly focused on realtime graphic issues and its key technologies. In virtual simulation of transportation equipments, this paper proposes a systematic construction process of 3D database consisting of four stages as follows: 1) determine the activity space of a equipment, 2) collect data related to 3D database construction, 3) make a 3-dimensional modeling strategy, and 4) generate and evaluate a 3D model. This paper also introduces a new procedure of 3D environment modeling, which summarizes and expands our modeling experiences, to be used as a modeling guide.

Geographical and Equipment Modeling for 3D Excavation Simulation

  • Moon, Sungwoo;Jo, Hwani;Ku, Hyeonggyun;Choi, Sungil
    • International conference on construction engineering and project management
    • /
    • 2017.10a
    • /
    • pp.242-244
    • /
    • 2017
  • Excavation for construction is implemented in natural geographical terrain using a variety of construction equipment. Therefore, 3D excavation simulation requires integration of geographical and equipment modeling. This paper proposes a technique that integrates geographical and equipment modeling for 3D simulations of construction excavation. The geographical model uses a digital map to show ground surface changes during excavation and the equipment model shows equipment movement and placement. This combination produced a state of the art 3D simulation environment that can be used for machine guidance. An equipment operator can use the 3D excavation simulation to help construction equipment operators with decisions during excavation work and consequently improve productivity.

  • PDF