• Title/Summary/Keyword: model predictive control

Search Result 565, Processing Time 0.027 seconds

Bilinear Model Predictive Control for Grade Change Operations in Paper Mills (지종교체 공정의 Bilinear 모델 예측제어)

  • Choo, Yeon-Uk;Yeo, Yeong-Koo;Kang, Hong
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.61-66
    • /
    • 2005
  • The grade change operations In paper mills exhibit inherent nonlinear dynamic characteristics. For this reason, the conventional model predictive control techniques based on linear process models are not adequate for the grade change operations. In this paper, a bilinear model for the nonlinear grade change processes was presented first and optimal input variables were calculated by using one-step-ahead predictive control method. Numerical simulations showed that the control performance lied within acceptable range and that the bilinear model predictive control scheme was highly promising control strategy for the grade change operations.

Robust Model Predictive Control Using Polytopic Description of Input Constraints

  • Lee, Sang-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.566-569
    • /
    • 2009
  • In this paper, we propose a less conservative a linear matrix inequality (LMI) condition for the constrained robust model predictive control of systems with input constraints and polytopic uncertainty. Systems with input constraints are represented as perturbed systems with sector bounded conditions. For the infinite horizon control, closed-loop stability conditions are obtained by using a parameter dependent Lyapunov function. The effectiveness of the proposed method is shown by an example.

Neural Model Predictive Control for Nonlinear Chemical Processes

  • Song, Jeong-Jun;Park, Sunwon
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.899-902
    • /
    • 1993
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming combined with neural identification network is used to generate the optimum control law for complex continuous chemical reactor systems that have inherent nonlinear dynamics. The neural model predictive controller (MNPC) shows good performances and robustness. To whom all correspondence should be addressed.

  • PDF

A Model Predictive Controller for The Water Level of Nuclear Steam Generators

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.102-110
    • /
    • 2001
  • In this work, the model predictive control method was applied to a linear model and a nonlinear model of steam generators. The parameters of a linear model for steam generators are very different according to the power levels. The model predictive controller was designed for the linear steam generator model at a fixed power level. The proposed controller at the fixed power level showed good performance for any other power levels by designed changing only the input-weighting factor. As the input-weighting factor usually increases, its relative stability does so. The steam generator has some nonlinear characteristics. Therefore, the proposed algorithm has been implemented for a nonlinear model of the nuclear steam generator to verify its real performance and also, showed good performance.

  • PDF

Adaptive Nonlinear Constrained Predictive Control of pH Neutralization in Fed-batch Bio-reactor

  • Zhe, Xu;Kim, Hak-Kyeong;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.90-95
    • /
    • 2003
  • In this paper, an Adaptive Nonlinear Constrained Model Predictive Control (ANCMPC) is presented for a pH control in a fed-batch bio-reactor. The pH model is represented with Hammerstein Model. The static nonlinear part of Hammerstein model is described with the static pH model, and the dynamic linear part of the Hammerstein model is described with the CARIMA model. The parameters of the CARIMA model is estimated on-line with the input and output measurements of the system using a recursive least squares type of identi�cation algorithm. The e�ectiveness of the proposed controller is shown through simulations.

  • PDF

A Model Predictive Control Method of a Cascaded Flying Capacitor Multi-level Rectifier for Solid State Transformer for DC Distribution System (DC 배전용 반도체 변압기를 위한 직렬 연결된 플라잉 커패시터 멀티-레벨 정류기의 모델 예측 제어 방법)

  • Kim, Si-Hwan;Jang, Yeong-Hyeok;Kim, June-Sung;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.5
    • /
    • pp.359-365
    • /
    • 2018
  • This study introduces a model predictive control method for controlling a cascaded flying capacitor multilevel rectifier used as an AC-DC rectifier of a solid-state transformer for DC distribution systems. The proposed method reduces the number of states that need to be considered in model predictive control by separately controlling input current, output DC link voltage, and flying capacitor voltage. Thus, calculation time is shortened to facilitate the level expansion of the cascaded flying capacitor multilevel rectifier. The selection of weighting factors did not present difficulties because the weighting factors in the cost function of the conventional model predictive control are not used. The effectiveness of the proposed method is verified through computer simulation using powersim and experiment.

A Study on the Control of Electro-Hydraulic Motors Using Ahead Predictive Adaptive Control Method (예측 적응제어 기법을 이용한 전기 유압 모터의 제어에 관한 연구)

  • Kim, Byeong-Woo;Hur, Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1360-1365
    • /
    • 2011
  • Electro-hydraulic servo motor is used to a lot of in the field of industrial equipment which requires one of the control functions among pressure, flow, and power output. In this paper, linear discrete reference model of the electro-hydraulic servo motor system are made for 1-step ahead predictive control. The parameters of electro-hydraulic servo motor system are estimated using the recursive least square method. 1-step ahead predictive model output of electro-hydraulic servo motor system corresponded to reference model output in spite of estimated parameters are not meet real parameters. Control performance affections are studied due to the forgetting factors variation.

Model Predictive Control for Input Constrained Systems with Time-varying Delay (시변 시간지연을 가지는 입력제한 시스템의 모델예측제어)

  • Lee, S.M.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.7
    • /
    • pp.1019-1023
    • /
    • 2012
  • This paper considers a model predictive control problem of discrete-time constrained systems with time-varying delay. For this problem, a delay dependent state feedback control approach is used to achieve asymptotic stabilization of systems with input constraints. Based on Lyapunov stability theory, a new stability condition is obtained via linear matrix inequality formulation to find cost monotonicity condition of the model predictive control algorithm which guarantee the closed loop stability. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our results.

Multivariable Nonlinear Model Predictive Control of a Continuous Styrene Polymerization Reactor

  • Na, Sang-Seop;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.45-48
    • /
    • 1999
  • Model predictive control algorithm requires a relevant model of the system to be controlled. Unfortunately, the first principle model describing a polymerization reaction system has a large number of parameters to be estimated. Thus there is a need for the identification and control of a polymerization reactor system by using available input-output data. In this work, the polynomial auto-regressive moving average (ARMA) models are employed as the input-output model and combined into the nonlinear model predictive control algorithm based on the successive linearization method. Simulations are conducted to identify the continuous styrene polymerization reactor system. The input variables are the jacket inlet temperature and the feed flow rate whereas the output variables are the monomer conversion and the weight-average molecular weight. The polynomial ARMA models obtained by the system identification are used to control the monomer conversion and the weight-average molecular weight in a continuous styrene polymerization reactor It is demonstrated that the nonlinear model predictive controller based on the polynomial ARMA model tracks the step changes in the setpoint satisfactorily. In conclusion, the polynomial ARMA model is proven effective in controlling the continuous styrene polymerization reactor.

  • PDF

MODEL PREDICTIVE CONTROL OF NONLINEAR PROCESSES BY USE OF 2ND AND 3RD VOLTERRA KERNEL MODEL

  • Kashiwagi, H.;Rong, L.;Harada, H.;Yamaguchi, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.451-454
    • /
    • 1998
  • This paper proposes a new method of Model Predictive Control (MPC) of nonlinear process by us-ing the measured Volterra kernels as the nonlinear model. A nonlinear dynamical process is usually de-scribed as Volterra kernel representation, In the authors' method, a pseudo-random M-sequence is ar plied to the nonlinear process, and its output is measured. Taking the crosscorrelation between the input and output, we obtain the Volterra kernels up to 3rd order which represent the nonlinear characteristics of the process. By using the measured Volterra kernels, we can construct the nonlinear model for MPC. In applying Model Predictive Control to a nonlinear process, the most important thing is, in general, what kind of nonlinear model should be used. The authors used the measured Volterra kernels of up to 3rd order as the process model. The authors have carried out computer simulations and compared the simulation results for the linear model, the nonlinear model up to 2nd Volterra kernel, and the nonlinear model up to 3rd order Vol-terra kernel. The results of computer simulation show that the use of Valterra kernels of up to 3rd order is most effective for Model Predictive Control of nonlinear dynamical processes.

  • PDF