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Abstract

In this work, the model predictive control method was applied to a linear model and a

nonlinear model of steam generators. The parameters of a linear model for steam generators

are very different according to the power levels. The model predictive controller was designed

for the linear steam generator model at a fixed power level. The proposed controller designed

at the fixed power level showed good performance for any other power levels by changing only

the input-weighting factor. As the input-weighting factor usually increases, its relative stability

does so. The steam generator has some nonlinear characteristics. Therefore, the proposed

algorithm has been implemented for a nonlinear model of the nuclear steam generator to verify

its real performance and also, showed good performance.
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1. Introduction

The water level of a nuclear steam generator
must be properly controlled in order to secure
the sufficient cooling water of the nuclear reactor
and to prevent the damage of turbine blades. The
inadequate and insufficient performance of the
conventional controller has often resulted in
reactor trip (shutdown) and enforced operators to
hang on manual operation at low power {mainly,
at a startup time of a nuclear power plant). Also,
the non-minimum phase effects are significantly
greater at low power, which makes more
dangerous the use of a high gain of the control
loop at a reduced power level. Even to a skilled
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operator, therefore, it is hard to react effectively
in response to the reverse dynamics (swell and
shrink phenomena) of the water level, which is
induced by the non-minimum phase effects. Also,
the steam generator is highly complex, non-
linear, and time-varying system. Particularly, its
parameters undergo large changes according to
changes in operating conditions [1]. The steam
generator with narrow stability margin cannot
work satisfactorily with fixed P-I gains over all
power levels. Therefore, many advanced control
methods that include adaptive controllers {1-2],
optimal controllers [3-4], and fuzzy logic
controllers [5-8], have been suggested to solve

the steam generator water level control problem.
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The mode! predictive control methodology has
received much attention as a powerful tool for
the control of industrial process systems [9-14].
The basic concept of the model predictive
control is to solve an optimization problem for a
finite future at current time and to implement the
first optimal control input as the current control
input. As it were, at the present time k the
behavior of the process over a horizon N is
considered. Using a model the process response
to changes in the manipulated variable is
predicted. The moves of the manipulated
variables are selected such that the predicted
response has certain desirable characteristics.
Only the first computed change in the
manipulated variable is implemented. The
procedure is then repeated at each subsequent
instant. This method presents many advantages
over the conventional infinite horizon control
because it is possible to handle input and state
(or output) constraints in a systematic manner
during the design and implementation of the
control. In particular, it is a suitable control
strategy for time varying systems.

The objective of this work is to design a
satisfactory automatic controller without any
manual operation from start-up to full load
transient conditions. In this work, the model
predictive control method was applied to a
linear model [1] and a nonlinear model {15] of
steam generators. The parameters of the steam
generator linear model are very different
according to the power levels. The model
predictive controller was designed for the linear
steam generator model at a fixed power level.
The steam generator has some nonlinear
characteristics. Therefore, the proposed
algorithm has to be implemented for a
nonlinear mode! of the nuclear steam generator

to verify its real performance.
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Fig. 1. Model Predictive Control Method

2. Model Predictive Control Method

Model predictive control is a popular technique
for the control of slow dynamical systems. At
every time instant, model predictive control
requires the on-line solution of an optimization
problem to compute optimal control inputs over a
fixed number of future time instants, known as the
time horizon. The on-line optimization can be
typically reduced to either a linear program or a
quadratic program.

The model predictive control methed is to solve
an optimization problem for a finite future at
current time and to implement the first optimal
control input as the current control input. The
procedure is then repeated at each subsequent
instant. Figure 1 shows this basic concept [11]. As
it were, for any assumed set of present and future
control moves, the future behavior of the process
outputs can be predicted over a horizon N, and
the M present and future control moves (M<N)
are computed to minimize a quadratic objective
function. Though M control moves are calculated,
only the first control move is implemented. At the
next period, new values of the measured output

are obtained, the control horizon is shifted forward



104 dJ. Korean Nuclear Society, Volume 33, No. 1, February 2001

by one step, and the same calculations are
repeated.

The following time invariant discrete system will
be considered:

x(k +1) = Ax(k) + BAu(k) + Ev(k),
y(k) = Cx(k), )

where x(k)eR", AueR™, v(k)ER', and ylk)eR®
are the state vector, control input {feedwater flowrate),
measurable disturbance (steam flowrate), and process
output {steam generator water level), respectively. In
Eq. (1), the control input Au was used to remove the
offset error. The associated performance index is the
following quadratic function:

M
J =%Z{y(k+ J)-elk+ 7 Qlytk+ j) - ek + )+ dulk + )7 RAu(k + j)}

0

\ (@)
2 Ytk vt T Qstk+ -rtke ),
j=M+

where Q (positive semi-definite), Qr (positive semi-
definite) and R (positive definite} are weighting
matrices to penalize particular components of (y - r)
or Au at certain future time intervals and also,
they are symmetric matrices, and is a reference
input (target).

The objective is to find the control sequence
Aulk), aulk+1), --- Au(M) (assuming Au(M+1) =
-« = Au(N)=0) to minimize the quadratic function.
Using the powerful Lagrange-multiplier approach,
since there is a constraint function x(k+1) =
Ax(k}+Bau(k) + Ev(k), specified at each time k in
the interval of interest [k, k + NJ, we shall require
a Lagrange multiplier at each time. We append
the constraint to the performance index to define
an augmented performance index J' by

Z[L’ (x(k + ), Auk + ) +A(k + j + )T (Ax(k + j)

+BAu(k+ ) +Ev(k+ j)-x(k+ j+ l))]

3)

+ Z[L{(x(k + )N +MG+j+ 1) (Ax(k + )
j=M+1

+Ev(k+ j) - x(k + j+1))]+ LY (x(k + N)),

where

L =(y(e+ j)-r(k+ DY Qlytk+ j)-rk+ )
+Auk + /)T RAu(k + j) forj=0,---, M,

L = (yk + ) - vk + D) Qe (ylk + j) - vk + /)
for j=M+1,---,N.

Defining the Hamiltonian function as

HY (xtk + )), Mgk + )), v(k + j))

(L7 (x(k + ), Autk + j)) +A(k + j +1)T

(AX(k + j) + BAu(k + j) + Ev(k + j))

J for j=0,---, M, @)
L(x(k+ ) +h(k+ j+1)7

(Ax(k + j)+ Ev(k + j))

| forj=M+1,-,N~1,

we can rewrite the augmented performance index
as follows:

J'= L (x(k+ W) -4 (k+ )T (k4 N)+ B (x(k), Au(k), v(B)

+Z[H’(x(k+ Ihdulk+ ), v(k+ ) -h(k+ ) x(k+ 1)]

We now examine the increment in J' due to
increments in all the variables x(k+j), au{k+j), and
Alk+j). According to the Lagrange-multiplier
theory, at a constrained minimum this increment
dJ’ should be zero. Therefore,

W=l oy A &N ks N+ (%, ity + {1, due)

+Z[( Doy Ak Y i (b, T duii+ j)] o

j=l

N, .
Y (B, - stk ) e ),
=]

where

oH’

H,{(kq) = ———8x(k ey and so on.

Necessary conditions for a constrained minimum
are thus given by
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oH’

j =——j=0,"--,N-1,
AR vy ™
oH !
k+j)= ,Jj=0,-, N-1, 8
Mk + ) Xkt ) J (8)
oH’
0=—27_ _ j=0,--,N-1.
outk+ ) ©)

which arise from the terms inside the summations
and the coefficients of du(k), and

BLQJ N dek N)=
m"’v(/ﬁ' ) (k+N)=0, (10)
o
(m) a(k)=0. 1

From Egs. (7)-(9)

Ax(k + j) + BAu(k + j) + Ev(k + j)
for j=0,---, M,

Ax(k + )+ Ev(k + j) (12)
for j=M+1,--,N-1,

x(k+j+1)=

Ak + ) =CTQCx(k+ j)+ ATA(k+ j+1)
-CTQr(k+ ), (13)

0=B"A(k+j+1)+RAu(k+j). (14)

From Eq. (10), Boundary conditions are as follows:
A(k+N)=CTQ(Cx(k+N)-r(k+N)). (15)

The stationarity condition, Eq. (14), shows that

(16)
u(k+ j)=-RBA(k+j+1).

The Lagrange multiplier is a variable that is
determined by its own dynamical equation. It is
called the costate of the system and is called the
adjoint system. The coupled state and costate

equations can be written as

x(k+j+D] | A “BR'BT [ x(k+))
aMk+)) | lcTQe AT [Alk+j+D)

E , 0 LY
+[0]v(k+j)+[_CTQ]r(k+j)
for j=0,-\ M,
x(k+ j+1) A 0 x(k + f)
{k(k+j) ]:[CTQC AT][l(k«l»jH)]
(18)

+E k+ )+ 0 k+]
o[V D+ _erg [+

for j=M +1,--, N-1.

This version of the control law cannot be
implemented in practice, since the boundary
conditions are split between times j = 0 and j = N.
From Eq. (15), it seems reasonable to assume that
for all j<N, we can write

Mk + ) =FU)x(k+ j)-gk+Jj). (19)

This will turn out to be a valid assumption if
consistent equations can be found for F{j) and
glk+j). We can solve the following control input
through very lengthy derivation:

Au(k + j)= -K(j)x(k + )} - K, (J)v(k + )

+K (gk+j+1D), j=0, LM 20)

where
K(j)=[R+BF(+1)B]'B'F(j +1)A,
K,(j)=[R+BTF(+1)B]"'B"F(j +)E,
K,())=(R+B'F(+1)B]"'B",
F(j)= ATF(j +D)A-ATF( +)B[R+B’

F(j +1)B]'B F(j +1)A+C’QC,

N-M-1 .
F(M)= Y (A7) cTQ.CT A,

=0
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Fig. 2. Structure of the Designed Model
Predictive Controller

_ [(A~BKGN glk + j +D - [A~BK()
F(j +DEv(k + j) +CTQr(k + j) for js M
ATgk+j+1)- ATF(j + DEv(k + )

+CTQur(k+j) for M+1<j<N -1

gk + )

glk+N)=CTQpr(k+N).

Since only the first control input is implemented,
the control input {feedwater flowrate) of the model
predictive controller is as follows:

Au(k)=-K(0)x(k) - K, (0)v(k) + K (0)g(k +1). (21)

In Eq. (21), K(0), K,{0) and K;(0) are constant for
time-invariant systems. However, g(k+1) should
be solved every time step since the value depends
on the reference input (water level setpoint) and
the measurable disturbance (steam flowrate).
Figure 2 shows the structure of the designed
model predictive controller. In this figure, it is
shown that the changes of the water level
setpoint and steam flowrate drive the control
actions.

In order to guarantee the closed-loop stability for
the proposed controller, the following condition of
the matrix inequality must be subjected on the
terminal weighting matrix Qr{14):

C’Q,C2A’C’Q,cll + BR'B’CTQ,C

-1
) (22)
A+CTQcC.

3. Application to the the Steam
Generator Water Level Control

3.1. A Linear Model

Numerical simulations are performed to study
the performance of the proposed algorithm. The
dynamics of a steam generator is described in
terms of input (feedwater flowrate; u), output
(water level; y) and measurable disturbance (steam
flowrate; V). Based on the step response of the
steam generator water level for step changes of
the feedwater flowrate and the steam flowrate,
Irving [1] derived the following 4-th order Laplace
transfer function for steam generators:

GZ
1+ TS

[u(s)-v(s)]

) =%[u(s)—v(s)]-

G;s
z’,‘z +4rT 2 4+ 2r|'ls +52

(23)

+ u(s),

where s is a Laplace variable. This plant is a single
input (feedwater) and a single output (water level).
The parameter values of a steam generator at
several power levels are given in Table 1 and the
parameters are very different according to the
power levels. Since (G, - Gi7y) is greater than zero,
Eq. (23) has a positive zero that represents a non-
minimum phase effect. An unstable zero lowers
the control gain to preserve stability. As the load
decreases, the zero moves to the right, stability
being more critical and the water level of the
steam generator being more difficult to control. In
these numerical simulations, the sampling time is
chosen to be 5 sec.

Figures 3 and 4 show the performances of this
proposed controller in case it is applied to the
linear model. As shown in Figs. 3 and 4, all
conditions are in a steady state during initial 100
sec. Then, the setpoint of the water level was
suddenly changed at 100 sec and the steam
flowrate (measurable disturbance) was changed at
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Fig. 3. Performance of the Proposed Controller
for the Linear Model (Low Powers)

2000 sec. In these figures, all values represent the
difference from the corresponding steady state
values. Therefore, all values are zeros at the steady
state. The magnitude of the disturbance at 2000
sec is 5 percent rated steam flowrate
[71.75kg/sec = 0.05x 1435kg/sec (rated steam
flowrate)]. Q and Qr (these are scalar values
because of a single output) were chosen as 0.5
and 1, respectively. The input-weighting factor R
was differently chosen according to the power
level in order to have good performances and, of
course, satisfy the stability condition, Eq. {22). The
prediction and control horizons are 100 and 3,
respectively. The proposed control algorithm
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Fig. 4. Performance of the Proposed Controller
for the Linear Model (High Powers)

tracks well the setpoint and steam flowrate
changes. Figure 5 shows the input-weighting
factor versus power level. As the power level
increases, the factor decreases exponentially. The
swell and shrink phenomena are larger at low
power levels than those at high power levels. The
measured water level tracks its setpoint faster at

high powers than at low powers.
3.2. A Nonlinear Model

The steam generator has some nonlinear
characteristics. Therefore, the proposed algorithm
has to be implemented for a nonlinear model of
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Table 1. Parameters of a Steam Generator Model at Several Powers
Power level (%) Gy G, Gs 7,(sec) r5(sec) Tlsec) (kg/sec)
5 0.058 9.630 0.181 419 48 4 119.6 574
15 0.058 4.46 0.226 26.3 215 60.5 180.8
30 0.058 1.83 0.310 43.4 45 17.7 381.7
50 0.058 1.05 0.215 34.8 3.6 14.2 660.0
100 0.058 0.47 0.105 28.6 34 11.7 1435.0
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Fig. 5. Input-weighting Factor Versus Power Level

the nuclear steam generator to verify its real
performance. The 2-region model of a nonlinear
model [15] is used in this work and its nodal
description is shown in Fig. 6. Table 2 shows the
design parameters of a Westinghouse model F
steam generator. In this figure, W,h,x, and Q
denote flowrate, enthalpy, steam quality, and heat
input from the primary side, respectively. The
computer code for the nonlinear model is written
in Fortran language. In order to perform the
numerical simulations, the proposed MATLAB
[16] control algorithm is interfaced with the code
written in Fortran language.

Since this nonlinear model is inadequate to
design the controller, the linear model mentioned
above (the linear model at 100 percent power
level) was used to design the controller. Figure 7

Wiehfe T

Fig. 6. Two-node Representation of a Steam Generator

shows the performance of the proposed algorithm
for the nonlinear model. The conditions of the
computer simulations for the nonlinear model are
the same as those for the linear model. The
magnitude of the disturbance at 2000 sec is 5
percent rated steam flowrate [57.85kg/sec = 0.05
X 1157kg/sec (rated steam flowrate)]. Q and Qf
(these are scalar values because of a single output)
were chosen as 0.5 and 1, respectively and also,
the prediction and control horizons are 100 and
3, respectively. In these simulations of the
nonlinear model, the same input-weighting factor
(R = 2) was used irrespective of the power level.
Although the linear model was used to design the
proposed algorithm, its performance is good. In
this nonlinear model, we can see that the swell
and shrink phenomena due to the feedwater



A Model Predictive Controller for The Water Level of --- M.G. Na 109

30
204 N‘. NP
E
L,
g 104
o
2
0 -
—&— setpoint
—o— water level (10%)
—&— water level (100%)
10 ey T T T T T
0 500 1000 1500 2000 2500 3000 3500 4000
time [sec}]
(a) water level
70
60 -4 '
50 4
g “
S
X 30
L
%’ 24 4
&
104
—&— steam flowrate
0 W gulen-tu- —o— foed flowrate(10%)
—A— foed flowrate(100%)
-10 . ' r W i -
0 500 1000 1500 2000 2500 3000 3500 4000
time [sec)
(b) flowrate

Fig. 7. Performance of the Proposed Controller
for the Nonlinear Model

flowrate change is not described adequately by
observing the water level response at about 100
sec when the water level setpoint changes and the
feedwater flowrate increase is large. However, it
can be seen that the swell and shrink phenomena
due to the steam flowrate change is described
adequately by observing the water level response
at about 2000 sec when the steam flowrate

disturbance occurs.
4. Conclusions

In this work, the model predictive control method

Table 2. Design Parameters of a Steam Generator
Used for the Nonlinear Model (M.K.S.

unit)
Name Size
Cross sectional steam dome area 10.94
Secondary(Primary) heat transfer area 5114(5114)
Cross sectional tube bundle area 2,699
Cross sectional downcomer area 0.7226
Cross sectional riser inlet area 7.760
Cross sectional riser outlet area 3.243
Downcomer volume 33.21
Steam dome volume 43.15
Boiling region volume 39.79
Riser volume 26.45
Lower downcomer length 10.91
Water level in downcomer 13.17
Parallel flow length in tube 6.960
Tube bundle length 8.460
Riser length 4.640

was developed to control the water level of nuclear
steam generators. The developed controller was
applied to the linear and nonlinear models for
nuclear steam generators. The parameters of the
linear model for a steam generator are very
different according to the power levels. Although
the model predictive controller was designed for the
linear steam generator model at a fixed power level,
the proposed controller showed good performance
for any other power levels by changing only the
input-weighting factor. As the power level increases,
the input-weighting factor decreases exponentially
and the input-weighting factor can be easily selected
according to power level change. Since the steam
generator has some nonlinear characteristics, the
proposed algorithm was implemented for a
nonlinear model of the nuclear steam generator to
verify its real performance. Also, the proposed
controller showed good performance for the water
level setpoint and steam flowrate (measurable
disturbance) changes.
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