• Title/Summary/Keyword: model predictive control

Search Result 565, Processing Time 0.024 seconds

The application of model predictive control for multi-loop control structure (다중루프 제어구조에의 모델예측제어의 적용)

  • 문혜진;이광순
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1400-1403
    • /
    • 1996
  • In this study, we applied the model predictive control(MPC) to Multi-loop control structure. Since MPC has many advantage for MIMO process and constraints handling, it induces the better performance to apply MPC to multi-loop control. And we suggest the advanced method to reduce the calculation load using the wavelet transform. It shows the possibility to substitute the existing PID control based structure with MPC.

  • PDF

Control of Two-Link Manipulator Via Feedback Linearization and Constrained Model Based Predictive Control

  • Son, Won-Kee;Park, Jin-Young;Ryu, Hee-Seb;Kwon, Oh-Kyu
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.221-227
    • /
    • 2000
  • This paper combines the constrained model predictive control with the feedback linearization to solve a nonlinear system control problem with input constraints. The combined approach consists of two steps: Firstly, the nonlinear model is linearized by the feedback linearization. Secondly, based on the linearized model, the constrained model predictive controller is designed taking input constraints into consideration. The proposed controller is applied to two link robot system, and tracking performances of the controller are investigated via some simulations, where the comparisons are done for the cases of unconstrained, constrained input in feedback linearization.

  • PDF

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

Design of Model Predictive Controllers with Velocity and Acceleration Constraints (속도 및 가속도 제한조건을 갖는 모델예측제어기 설계)

  • Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.20 no.6
    • /
    • pp.809-817
    • /
    • 2018
  • The model predictive controller performance of the mobile robot is set to an arbitrary value because it is difficult to select an accurate value with respect to the controller parameter. The general model predictive control uses a quadratic cost function to minimize the difference between the reference tracking error and the predicted trajectory error of the actual robot. In this study, we construct a predictive controller by transforming it into a quadratic programming problem considering velocity and acceleration constraints. The control parameters of the predictive controller, which determines the control performance of the mobile robot, are used a simple weighting matrix Q, R without the reference model matrix $A_r$ by applying a quadratic cost function from which the reference tracking error vector is removed. Therefore, we designed the predictive controller 1 and 2 of the mobile robot considering the constraints, and optimized the controller parameters of the predictive controller using a genetic algorithm with excellent optimization capability.

A Model Predictive Tracking Control Algorithm of Autonomous Truck Based on Object State Estimation Using Extended Kalman Filter (확장 칼만 필터를 이용한 대상 상태 추정 기반 자율주행 대차의 모델 예측 추종 제어 알고리즘)

  • Song, Taejun;Lee, Hyewon;Oh, Kwangseok
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2019
  • This study presented a model predictive tracking control algorithm of autonomous truck based on object state estimation using extended Kalman filter. To design the model, the 1-layer laser scanner was used to estimate position and velocity of the object using extended Kalman filter. Based on these estimations, the desired linear path for object tracking was computed. The lateral and yaw angle errors were computed using the computed linear path and relative positions of the truck. The computed errors were used in the model predictive control algorithm to compute the optimal steering angle for object tracking. The performance evaluation was conducted on Matlab/Simulink environments using planar truck model and actual point data obtained from laser scanner. The evaluation results showed that the tracking control algorithm developed in this study can track the object reasonably based on the model predictive control algorithm based on the estimated states.

Neural model predictive control for nonlinear chemical processes (비선형 화학공정의 신경망 모델예측제어)

  • 송정준;박선원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.490-495
    • /
    • 1992
  • A neural model predictive control strategy combining a neural network for plant identification and a nonlinear programming algorithm for solving nonlinear control problems is proposed. A constrained nonlinear optimization approach using successive quadratic programming cooperates with neural identification network is used to generate the optimum control law for the complicate continuous/batch chemical reactor systems that have inherent nonlinear dynamics. Based on our approach, we developed a neural model predictive controller(NMPC) which shows excellent performances on nonlinear, model-plant mismatch cases of chemical reactor systems.

  • PDF

Design of a Nuclear Reactor Controller Using a Model Predictive Control Method

  • Na, Man-Gyun;Jung, Dong-Won;Shin, Sun-Ho;Lee, Sun-Mi;Lee, Yoon-Joon;Jang, Jin-Wook;Lee, Ki-Bog
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2080-2094
    • /
    • 2004
  • A model predictive controller is designed to control thermal power in a nuclear reactor. The basic concept of the model predictive control is to solve an optimization problem for finite future time steps at current time, to implement only the first optimal control input among the solved control inputs, and to repeat the procedure at each subsequent instant. A controller design model used for designing the model predictive controller is estimated every time step by applying a recursive parameter estimation algorithm. A 3-dimensional nuclear reactor analysis code, MASTER that was developed by Korea Atomic Energy Research Institute (KAERI), was used to verify the proposed controller for a nuclear reactor. It was known that the nuclear power controlled by the proposed controller well tracks the desired power level and the desired axial power distribution.

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping;Liu, Zhifei;Du, Fada;Li, Jiajian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.983-990
    • /
    • 2017
  • This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.

Formation Flight Control of Unmanned Aerial Vehicles Using Model Predictive Control (모델 예측 기법 기반 무인 항공기의 편대 비행 제어 알고리즘)

  • Park, Jae-Mann;Shin, Jong-Ho;Kim, Hyoun-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.12
    • /
    • pp.1212-1217
    • /
    • 2008
  • This paper studies the feasibility of using the nonlinear model predictive control as a formation flight control algorithm for unmanned aerial vehicles. The optimal control inputs for formation flight are calculated through the cost function which incorporates the relative positions of the individual vehicles to maintain a desired formation and also the inequality constraints on inputs and states using the Karush-Kuhn-Tucker conditions. In the nonlinear model predictive control setting, the optimal control inputs are implemented in a receding horizon manner, which is suitable for dealing with dynamic constraints. Numerical simulations are executed for the validation of the proposed scheme.

Distributed Model Predictive Formation Control of UGV Swarm Guaranteeing Collision Avoidance (충돌 회피가 보장된 분산화된 군집 UGV의 모델 예측 포메이션 제어)

  • Park, Seong-Chang;Lee, Seung-Mok
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.17 no.2
    • /
    • pp.115-121
    • /
    • 2022
  • This paper proposes a distributed model predictive formation control algorithm for a group of unmanned ground vehicles (UGVs) with guaranteeing collision avoidance between UGVs. Generally, the model predictive control based formation control has a disadvantage in that it takes a long time to compute control inputs when considering collision avoidance between UGVs. In this paper, in order to overcome this problem, the formation control algorithm is implemented in a distributed manner so that it could be individually controlled. Also, a collision-avoidance method considering real-time is proposed. The proposed formation control algorithm is implemented based on robot operating system (ROS), open source-based middleware. Through the various simulation tests, it is confirmed that the formation control of five UGVs is successfully performed while avoiding collisions between UGVs.