• Title/Summary/Keyword: model inversion

Search Result 506, Processing Time 0.027 seconds

Remote Estimation Models for Deriving Chlorophyll-a Concentration using Optical Properties in Turbid Inland Waters : Application and Valuation (분광특성을 이용한 담수역 클로로필-a 원격 추정 모형의 적용과 평가)

  • Lee, Hyuk;Kang, Taegu;Nam, Gibeom;Ha, Rim;Cho, Kyunghwa
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.3
    • /
    • pp.272-285
    • /
    • 2015
  • Accurate assessment of chlorophyll-a (Chl-a) concentrations in inland waters using remote sensing is challenging due to the optical complexity of case 2 waters. and the inherent optical properties (IOPs) of natural waters are the most significant factors affecting light propagation within water columns, and thus play indispensable roles on estimation of Chl-a concentrations. Despite its importance, no IOPs retrieval model was specifically developed for inland water bodies, although significant efforts were made on oceanic inversion models. So we have applied and validated a recently developed Red-NIR three-band model and an IOPs Inversion Model for estimating Chl-a concentration and deriving inland water IOPs in Lake Uiam. Three band and IOPs based Chl-a estimation model accuracy was assessed with samples collected in different seasons. The results indicate that this models can be used to accurately retrieve Chl-a concentration and absorption coefficients. For all datasets the determination coefficients of the 3-band models versus Chl-a concentration ranged 0.65 and 0.88 and IOPs based model versus Chl-a concentration varied from 0.73 to 0.83 respectively. and Comparison between 3-band and IOPs based models showed significant performance with decrease of root mean square error from 18% to 33.6%. The results of this study provides the potential of effective methods for remote monitoring and water quality management in turbid inland water bodies using hyper-spectral remote sensing.

Interpretation of the Magnetic Logs for a Finite Line of Magnetic Dipoles Model (유한 선형 자기쌍극자 모델에 대한 검층자료의 해석)

  • Kim, Jin Hu
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.2
    • /
    • pp.135-142
    • /
    • 1999
  • Interpretations of 3-component magnetic logging data obtained for a reinforced bar as a model of the line of the magnetic dipoles are conducted using a least squared inversion technique. The length of the bar is 1.12 m, sampling interval is 0.05 m, the distance between the bar and the borehole is 0.3 m, and the top of the bar is fixed at 0 m of depth. The bar is set to be approximately vertical. Magnetic anomalies smoothed with FFT are used as input data for the inversion. For the interpretation of magnetic logging data the depth to the top, the length, the magnetic moment per unit length, the direction of the magnetization (declination and inclination), and the bearing and plunge of the line of magnetic dipoles are left as unknown parameters. The comparison of the results obtained from the individual inversion of the horizontal component or the vertical component of the magnetic anomalies, and those from the simultaneous inversion of horizontal and vertical component of the magnetic anomalies shows that there exist some disagreements between each inversion result. The depth to the bottom of the bar, which is actually 1.12 m, is estimated as 1.18 m, and the inclination of the magnetization is estimated as -76°by simultaneous inversion. The negative value of the inclination indicates that the strength of the remnant magnetization is much greater than that of the induced magnetization, so that the direction of the resultant magnetization points to the top of the bar.

  • PDF

Investigation of Concrete Structure Using Geophysical Prospecting Method (물리탐사법을 이용한 콘크리트 구조물 조사에 관한 연구)

  • Suh, Baek-Soo;Kim, Yong-In
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.63-68
    • /
    • 2003
  • Non-destructive method by tomography for safety diagnosis of civil engineering and building structures is tried. There are traveltime tomography that uses traveltime and fullwave tomography that uses the initial shock and seismic amplitude. But these methods have difficulty and weak points in accuracy and selection of initial value. In this study, corrected inversion method which is able to solve the two difficulty and this method is applied to theoretical pier model to calculate tomography.

  • PDF

The GaAs Inversion-type MISFET using Fluoride Gate Insulator (불화물 게이트 절연막을 이용한 반전형 GaAs MISFET)

  • KWang Ho Kim
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.30A no.3
    • /
    • pp.61-66
    • /
    • 1993
  • The interface properties of Fluoride/GaAs structures were investigated. It was foung that rapid thermal annealing(RTA) typically 800-850$^{\circ}C$for 1 min, was useful for improving the interface properties of that structures. The analysis by means of SIMS indicated that interdiffusion of each constitutional atom through the interface was negligible. The interfacial atom bonding model for RTA treatment was proposed. Bases on these results, inversion-type GaAs MISFET was fabricated using standard planar technologies.

  • PDF

Safety Analysis of Reservoir Dikes in South Korea through the Interpretation of the Electrical Resistivity Data Considering Three-dimensional Structure (3차원 구조를 고려한 전기비저항 탐사자료 해석을 통한 국내 저수지 제체 안전성 분석)

  • Song, Sung-Ho;Yong, Hwan-Ho;Lee, Gyu-Sang;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.3
    • /
    • pp.160-167
    • /
    • 2019
  • Resistivity inversion result may be distorted if the seepage line fluctuation within central core with the change of reservoir water level as well as the conductivity of the reservoir water is not taken into consideration because the reservoir dike is composed of three-dimensional (3D) resistivity structure. Consequently, to accurately analyze the resistivity changes inside the reservoir dike according to the change of reservoir water level, 3D electrical resistivity modeling for the 2D survey line considering topography and physical properties of dam components was carried out. In addition, 2D inversion was performed with the simulated 2D resistivity data for a given 3D model in order to compare it with the inversion result of real field data. For 283 reservoirs in Korea, 2D inversion results for the simulated 2D data and field 2D resistivity data were compared. Finally, the reservoirs with an inversion ratio of 50% or less were selected as reservoirs that require further precise investigation.

Design of Glide Slope Capture Logic Using Model Inversion

  • Park, Hyung-Sik;Ha, Cheol-Keun;Kim, Byoungsoo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.50.6-50
    • /
    • 2001
  • This paper deals with a design of nonlinear glide slope capture logic using dynamic model inversion in singular perturbation, which is applicable to the autolanding in ILS. Aircraft dynamics are separated into the fast time-scale variables, related with the inner-loop design, and the slow time-scale variables, related with the outer-loop design. It is assumed that the aircraft starts landing at 1000ft of altitude, -2.5deg of flight path angle, and 250ft/sec of velocity. In the outer-loop design, commands of altitude and velocity are selected and thereby the pseudo-controls of power level and pitch rate are determined. Also the elevator input to the aircraft is determined in the inner-loop design. The final design is evaluated in 6 DOF simulation model of the associated aircraft, in which the actuator models are not included. The results show the satisfactory autolanding ...

  • PDF

Time domain and frequency domain interpretation of safety diagnosis for concrete structure

  • Suh Baeksoo;An Jehun;Kim Hyoungjun;Kim Yongin
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.464-469
    • /
    • 2003
  • The traditional and still most widely used, test methods for concrete structures are destructive method, such as coring, drilling or otherwise removing part of the structure to permit visual inspection of the interior. While these methods are highly reliable, they are also time consuming and expensive, and the defects they leave behind often become focal point for deterioration. In this study, tomography by theoretical inversion method in case of elastic wave using impact-echo method among concrete non-destruction test method was made. Taken model experiments are theoretical inversion method and time domain and frequency domain test on pier test model at laboratory level. Also experiment concerning frequency domain on 3 kinds of tunnel model with I-dimension form was carried out.

  • PDF

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF

Acoustic 2-D Full-waveform Inversion with Initial Guess Estimated by Traveltime Tomography (주시 토모그래피와 음향 2차원 전파형 역산의 적용성에 관한 연구)

  • Han Hyun Chul;Cho Chang Soo;Suh Jung Hee;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Seismic tomography has been widely used as high resolution subsurface imaging techniques in engineering applications. Although most of the techniques have been using travel time inversion, waveform method is being driven forward owing to the progress of computational environments. Although full-waveform inversion method has been known as the best method in terms of model resolving power without high-frequency restriction and weak scattering approximation, it has practical disadvantage that it is apt to get stuck in local minimum if the initial guess is far from the actual model and it consumes so much time to calculate. In this study, 2-D full-waveform inversion algorithm in acoustic medium is developed, which uses result of traveltime tomography as initial model. From the application on synthetic data, it is proved that this approach can efficiently reduce the problem of conventional approaches: our algorithm shows much faster convergence rate and improvement of model resolution. Result of application on physical modeling data also shows much improvement. It is expected that this algorithm can be applicable to real data.

  • PDF

Full Waveform Inversion Using Automatic Differentiation (자동 미분을 이용한 전파형 역산)

  • Wansoo, Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.242-251
    • /
    • 2022
  • Automatic differentiation automatically calculates the derivatives of a function using the chain rule once the forward operation of a function is defined. Given the recent development of computing libraries that support automatic differentiation, many researchers have adopted automatic differentiation techniques to solve geophysical inverse problems. We analyzed the advantages, disadvantages, and performances of automatic differentiation techniques using the gradient calculations of seismic full waveform inversion objective functions. The gradients of objective functions can be expressed as multiplications of the derivatives of the model parameters, wavefields, and objective functions using the chain rule. Using numerical examples, we demonstrated the speed of analytic differentiation and the convenience of complex gradient calculations for automatic differentiation. We calculated derivatives of model parameters and objective functions using automatic differentiation and derivatives of wavefields using analytic differentiation.