Browse > Article
http://dx.doi.org/10.15681/KSWE.2015.31.3.272

Remote Estimation Models for Deriving Chlorophyll-a Concentration using Optical Properties in Turbid Inland Waters : Application and Valuation  

Lee, Hyuk (Water Quality Assessment Research Division, National Institute of Environmental Research)
Kang, Taegu (Water Quality Assessment Research Division, National Institute of Environmental Research)
Nam, Gibeom (Water Quality Assessment Research Division, National Institute of Environmental Research)
Ha, Rim (Water Quality Assessment Research Division, National Institute of Environmental Research)
Cho, Kyunghwa (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology)
Publication Information
Abstract
Accurate assessment of chlorophyll-a (Chl-a) concentrations in inland waters using remote sensing is challenging due to the optical complexity of case 2 waters. and the inherent optical properties (IOPs) of natural waters are the most significant factors affecting light propagation within water columns, and thus play indispensable roles on estimation of Chl-a concentrations. Despite its importance, no IOPs retrieval model was specifically developed for inland water bodies, although significant efforts were made on oceanic inversion models. So we have applied and validated a recently developed Red-NIR three-band model and an IOPs Inversion Model for estimating Chl-a concentration and deriving inland water IOPs in Lake Uiam. Three band and IOPs based Chl-a estimation model accuracy was assessed with samples collected in different seasons. The results indicate that this models can be used to accurately retrieve Chl-a concentration and absorption coefficients. For all datasets the determination coefficients of the 3-band models versus Chl-a concentration ranged 0.65 and 0.88 and IOPs based model versus Chl-a concentration varied from 0.73 to 0.83 respectively. and Comparison between 3-band and IOPs based models showed significant performance with decrease of root mean square error from 18% to 33.6%. The results of this study provides the potential of effective methods for remote monitoring and water quality management in turbid inland water bodies using hyper-spectral remote sensing.
Keywords
Chlorophyll-a Concentration; Inherent Optical Properties (IOPs); Inversion Model for Deriving IOPs; Red-NIR 3-band Model;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Brando, V. E. and Dekker, A. G. (2003). Satellite Hyperspectral Remote Sensing for Estimating Estuarine and Coastal Water Quality, IEEE Transactions on Geoscience and Remote Sensing, 41, pp. 1378-1387.   DOI
2 Buiteveld, H., Hakvoort, J. H. M., and Donze, M. (1994). The Optical Properties of Pure Water, SPIE Proceedings, Ocean Optics XII, 2258, pp. 174-183.
3 Dall'Olmo, G. and Gitelson, A. A. (2006). Effect of Bio-optical Parameter Variability and Uncertainties in Reflectance Measurements on the Remote Estimation of Chlorophyll-a Concentration in Turbid Productive Waters: Modeling Results, Applied Optics, 45(15), pp. 3577-3592.   DOI
4 Dall'Olmo, G., Gitelson, A. A., and Rundquist, D. C. (2003). Towards a Unified Approach for Remote Estimation of Chlorophyll-a Inboth Terrestrial Vegetation and Turbid Productive Waters, Geophysical Research Letters, 30, pp. 1038.   DOI
5 Dekker, A. (1993). Detection of the Optical Water Quality Parameters for Eutrophic Waters by High Resolution Remote Sensing, Ph.D. Thesis, Free University, Amsterdam, The Netherlands.
6 Garver, S. A. and Siegel, D. A. (1997). Inherent Optical Property Inversion of Ocean Color Spectra and Its Biogeochemical Interpretation 1. Time Series from the Sargasso Sea, Journal of Geophysical Research-Oceans, 102, pp. 18607-18625.   DOI
7 Giardino, C., Brando, V. E., Dekker, A. G., Strombeck, N., and Candiani, G. (2007). Assessment of Water Quality in Lake Garda (Italy) using Hyperion, Remote Sensing of Environment, 109, pp. 183-195.   DOI
8 Gitelson, A. A. (1992). The Peak Near 700 nm on Reflectance Spectra of Algae and Water: Relationships of Its Magnitude and Position with Chlorophyll Concentration, International Journal of Remote Sensing, 13, pp. 3367-3373.   DOI
9 Gilerson, A. A., Gitelson, A. A., Gurlin, D., Moses, W., Ioannou, I., and Ahmed, S. (2010). Algorithms for Remote Estimation of Chlorophyll-a in Coastal and Inland Waters using Red and Near Infrared Bands, Optics Express, 18, pp. 24109-24125.   DOI
10 Gitelson, A. A., Gritz, U., and Merzlyak, M. N. (2003). Relationships between Leaf Chlorophyll Content and Spectral Reflectance and Algorithms for Non-destructive Chlorophyll Assessment in Higher Plant Leaves, Journal of Plant Physiology, 160, pp. 271-282.   DOI
11 Gitelson, A., Keydan, G., and Shishkin, V. (1985). Inland Waters Quality Assessment from Satellite Data in Visible Range of the Spectrum, Soviet Remote Sensing, 6, pp. 28-36.
12 Gitelson, A. A. and Kondratyev, K. Y. (1991). Optical Models of Mesotrophic and Eutrophic Water Bodies, International Journal of Remote Sensing, 12, pp. 373-385.   DOI
13 Gitelson, A. A., Kondratyev, K., and Garbusov, G. (1987). New Approach to Monitoring Aquatic Ecosystem Quality, Transactions of the USSR Academy of Sciences: Earth Science Sections, 295, pp. 825-827.
14 Gitelson, A. A., Schalles, J. F., and Hladik, C. M. (2007). Remote Chlorophyll-a Retrieval in Turbid, Productive Estuaries: Chesapeake Bay Case Study, Remote Sensing of Environment, 109, pp. 464-472.   DOI
15 Gitelson, A. A., Vina, A., Ciganda, V., Rundquist, D. C., and Arkebauer, T. J. (2005). Remote Estimation of Canopy Chlorophyll Content in Crops, Geophysical Research Letters, 32, L08403. doi:10.1029/2005GL022688   DOI
16 Gons, H. J. (1999). Optical Teledetection of Chlorophyll a in Turbid Inland Waters, Environmental Science & Technology, 33, pp. 1127-1132.   DOI
17 Gons, H. J., Auer, M. T., and Effler, S. W. (2008). MERIS Satellite Chlorophyll Mapping of Oligotrophic and Eutrophic Waters in the Laurentian Great Lakes, Remote Sensing of Environment, 112, pp. 4098-4106.   DOI
18 Gordon, H., Brown, O. B., Evans, R. H., Brown, J. W., Smith, R. C., Baker, K. S., and Clark, D. K. (1988). A Semianalytic Radiance Model of Ocean Color, Journal of Geophysical Research-Atmospheres, 93, pp. 10909-10924.   DOI
19 Gons, H. J., Rijkeboer, M., and Ruddick, K. G. (2002). A Chlorophyll-Retrieval Algorithm for Satellite Imagery (Medium Resolution Imaging Spectrometer) of Inland and Coastal Waters, Journal of Plankton Research, 24, pp. 947-951.   DOI
20 Gons, H. J., Rijkeboer, M., and Ruddick, K. G. (2005). Effect of a Waveband Shift on Chlorophyll Retrieval from MERIS Imagery of Inland and Coastal Waters, Journal of Plankton Research, 27, pp. 125-127.
21 Gordon, H and Morel, A. (1983). Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, Lecture Notes on Coastal and Estuarine Studies 4, Springer-Verlag.
22 Gould, R. W., Arnone, R. A., and Sydor, M. (2001). Absorption, Scattering; and Remotesensing Reflectance Relationships in Coastalwaters: Testing a Newinversion Algorithm, Journal of Coastal Research, 17, pp. 328-341.
23 Gower, J. F. R., Doerffer, R., and Borstad, G. A. (1999). Interpretation of the 685 nm Peak in Water-Leaving Radiance Spectra in Terms of Fluorescence, Absorption and Scattering, and its Observation by MERIS, international Journal of Remote Sensing, 20, pp. 1771-1786.   DOI
24 Han, L. and Rundquist, D. (1997). Comparison of NIR/RED Ratio and First Derivative of Reflectance in Estimating Algal-Chlorophyll Concentration: A Case Study in a Turbid Reservoir, Remote Sensing of Environment, 62, pp. 253-261.   DOI
25 Hakvoort, H., de Haan, J., Jordans, R., Vos, R., Peters, S., and Rijkeboer, M. (2002). Towards Airborne Remote Sensing of Water Quality in the Netherlands - Validation and Error Analysis, ISPRS Journal of Photogrammetry and Remote Sensing, 57, pp. 171-183.   DOI   ScienceOn
26 Hoge, F. E. and Lyon, P. E. (2005). New Tools for the Study of Oceanic Eddies: Satellite Derived Inherent Optical Properties, Remote Sensing of Environment, 95, pp. 444-452.   DOI
27 Hirawake, T., Takao, S., Horimoto, N., Ishimaru, T., Yamaguchi, Y., and Fukuchi, M. (2011). A Phytoplankton Absorption-Based Primary Productivity Model for Remote Sensing in the Southern Ocean, Polar Biology, 34, pp. 291-302.   DOI
28 Hoge, F. E. and Lyon, P. E. (1996). Satellite Retrieval of Inherent Optical Properties by Linear Matrix Inversion of Oceanic Radiance Models: An Analysis of Model and Radiance Measurement Errors, Journal of Geophysical Research-Oceans, 101, pp. 16631-16648.   DOI
29 Hoge, F. E and Lyon, P. E. (1999). Spectral Parameters of Inherent Optical Property Models: Method for Satellite Retrieval by Matrix Inversion of an Oceanic Radiance Model, Applied Optics, 38, pp. 1657-1662.   DOI
30 Hoogenboom, H. J., Dekker, A. G., and de Haan, J. F. (1998). Retrieval of Chlorophyll and Suspended Matter from Imaging Spectrometry Data by Matrix Inversion, Canadian Journal of Remote Sensing, 24, pp. 144-152.   DOI
31 Jupp, D. L. B., Kirk, J. T. O., and Harris, G. P. (1994). Detection, Identification and Mapping of Cyanobacteria - Using Remote-Sensing to Measure the Optical-Quality of Turbid Inland Waters, Australian Journal of Marine & Freshwater Research, 45, pp. 801-828.   DOI
32 Kutser, T. (2004). Quantitative Detection of Chlorophyll in Cyanobacterial Blooms by Satellite Remote Sensing, Limnology and Oceanography, 49, pp. 2179-2189.   DOI
33 Kutser, T., Hiire, M., Metsamaa, L., Vahtmae, E., Paavel, B., and Aps, R. (2009). Field Measurements of Spectral Backscattering Coefficient of the Baltic Sea and Boreal Lakes, Boreal Environment Research, 14, pp. 305-312.
34 Lee, Z. P., Carder, K. L., Peacock, T. G., Davis, C. O., and Mueller, J. L. (1996). Method to Derive Ocean Absorption Coefficients from Remote-Sensing Reflectance, Applied Optics, 35, pp. 453-462.   DOI
35 Le, C. F., Li, Y. M., Zha, Y., Sun, D. Y., and Yin, B. (2009). Validation of a Quasi-Analytical Algorithm for Highly Turbid Eutrophic Water of Meiliang Bay in Taihu Lake, China, IEEE Transactions on Geoscience and Remote Sensing, 47, pp. 2492-2500.   DOI
36 Lee, Z. P. and Carder, K. L. (2004). Absorption Spectrum of Phytoplankton Pigments Derived from Hyperspectral Remote-Sensing Reflectance, Remote Sensing of Environment, 89, pp. 361-368.   DOI
37 Lee, Z. P., Carder, K. L., and Arnone, R. A. (2002). Deriving Inherent Optical Properties from Water Color: A Multiband Quasi-Analytical Algorithm for Optically Deep Waters, Applied Optics, 41, pp. 5755-5772.   DOI
38 Lee, Z. P., Lubac, B., Werdell, J., and Arnone, R. (2009). An Update of the Quasi-Analytical Algorithm(QAA_v5), IOCCG Software Report (www.ioccg.org/groups/Software_OCA).
39 Li, L., Li, L., Song, K., Li, Y., Tedesco, L. P., Shi, K., Li, Z. (2013). An Inversion Model for Deriving Inherent Optical Properties of Inland Waters: Establishment, Validation and Application, Remote Sensing of Environment, 135, pp. 150-166.   DOI
40 Ma, R. H., Pan, D. L., Duan, H. T., and Song, Q. J. (2009). Absorption and Scattering Properties of Water Body in Taihu Lake, China: Backscattering, International Journal of Remote Sensing, 30, pp. 2321-2335.   DOI
41 Maritorena, S. and Siegel, D. A. (2005). Consistent Merging of Satellite Ocean Color Data Sets Using a Bio-Optical Model, Remote Sensing of Environment, 94, pp. 429-440.   DOI
42 Morel, A. and Prieur, L. (1997). Analysis of Variations in Ocean Color, Limnology and Oceanography, 22, pp. 709-722.
43 Maritorena, S. and Siegel, D. A. (2006). The GSM Semi-Analytical Bio-Optical Model, in Z. P. Lee (Ed.), Remote Sensing of Inherent Optical Properties, Fundamentals, Tests of Algorithms, and Applications, pp. 81-86. Canada: Dartmous.
44 Maritorena, S., Siegel, D. A., and Peterson, A. R. (2002). Optimization of a Semianalytical Ocean Color Model for Global-Scale Applications, Applied Optics, 41, pp. 2705-2714.   DOI
45 Mittenzwey, K. H., Ullrich, S., Gitelson, A. A., and Kondratiev, K. Y. (1992). Determination of Chlorophyll a of Inland Waters on the Basis of Spectral Reflectance, Limnology and Oceanography, 37, pp. 147-149.   DOI
46 Oliver, M. J., Schofield, O., Bergmann, T., and Glenn, S. (2004). Deriving in situ Phytoplankton Absorption for Bio-Optical Productivity Models in Turbid Waters, Journal of Geophysical Research, 109, C07S04, http://dx.doi.org/10.1029/2002JC001627.   DOI
47 Ritchie, R. J. (2008). Universal Chlorophyll Equations for Estimating Chlorophylls A, B, C, and D and Total Chlorophylls in Natural Assemblages of Photosynthetic Organisms Using Acetone, Methanol, or Ethanol Solvents, Photosynthetica, 46, pp. 115-126.   DOI
48 Simis, S. G. H., Peters, S. W. M., and Gons, H. J. (2005). Remote Sensing of the Cyanobacterial Pigment Phycocyanin in Turbid Inland Water, Limnology and Oceanography, 50, pp. 237-245.   DOI
49 Simis, S. G. H., Ruiz-Verdu, A., Dominguez-Gomez, J. A., Pena-Martinez, R., Peters, S. W. M., and Gons, H. J. (2007). Influence of Phytoplankton Pigment Composition on Remote Sensing of Cyanobacterial Biomass, Remote Sensing of Environment, 106, pp. 414-427.   DOI
50 Stumpf, R. P. and Tyler, M. A. (1988). Satellite Detection of Bloom and Pigment Distributions in Estuaries, Remote Sensing of Environment, 24, pp. 385-404.   DOI
51 Sun, D. Y., Li, Y. M., Wang, Q., Lv, H., Le, C. F., Huang, C. C., and Gong, S. H. (2010). Partitioning Particulate Scattering and Absorption into Contributions of Phytoplankton and Non-Algal Particles in Winter in Lake Taihu, Hydrobiologia, 644, pp. 337-349.   DOI
52 Wang, P., Boss, E. S., and Roesler, C. (2005). Uncertainties of Inherent Optical Properties Obtained Fromsemianalytical Inversions of Ocean Color, Applied Optics, 44, pp. 4074-4085.   DOI
53 Zhang, Y. L., Liu, M. L., Wang, X., Zhu, G. W., and Chen, W. M. (2009). Bio-Optical Properties and Estimation of the Optically Active Substances in Lake Tianmuhu in Summer, International Journal of Remote Sensing, 30, pp. 2837-2857.   DOI
54 Zibordi, G., Berthon, J. F., Melin, F., and D'Alimonte, D. (2011). Cross-Site Consistent in situ Measurements for Satellite Ocean Color Applications: The Biomap Radiometric Dataset, Remote Sensensing of Environment, 115, pp. 2104-2115.   DOI
55 Zibordi, G., Melin, F., Hooker, S. B., D'alimonte, D., and Holbert, B. (2004). An Autonomous Above-Water System for the Validation of Ocean Color Radiance Data, IEEE Transaction on Geoscience and Remote Sensing, 42, pp. 401-415.   DOI
56 Vasilkov, A. and Kopelevich, O. (1982). Reasons for the Appearance of the Maximum Near 700 nm in the Radiance Spectrum Emitted by the Ocean Layer, Oceanology, 22, pp. 697-701.