• Title/Summary/Keyword: model errors

Search Result 3,136, Processing Time 0.045 seconds

Application of Neural Network Based on On-Machine-Measurement Data for Machining Error Compensation (절삭가공오차보상을 위한 기상측정 데이터기반 신경회로망의 응용)

  • 서태일;박균명;조명우;윤길상
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.376-381
    • /
    • 2001
  • This paper presents a methodology of machining error compensation by using Artificial Neural Network(ANN) model based on the inspection database of On-Machine-Measurement(OMM) system. First, the geometric errors of the machining center and the probing errors are significantly reduced through compensation processes. Then, we acquire machining error distributions from a specimen workpiece. In order to efficiently analyze the machining errors, we define two characteristic machining error parameters. These can be modeled by using an ANN model, which allows us to determine the machining errors in the domain of considered cutting conditions. Based on this ANN model, we try to correct the tool path in order to effectively reduce the errors by using an iterative algorithm. The iterative algorithm allows us to integrate changes of the cutting conditions according to the corrected tool path. Experimentation is carried out in order to validate the approaches proposed in this paper.

  • PDF

Statistical Analysis of the Position Errors of a Machine Tool Using Ball Bar Test (볼바 측정을 통한 공작기계 위치오차의 통계적 분석)

  • 류순도;양승한
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.501-504
    • /
    • 2001
  • The use of error compensation techniques has been recognized as an effective way in the improvement of the accuracy of a machine tool. The laser measurement method for identifying position errors of machine tool has the disadvantages such as high cost, long calibration time and usage of volumetric error synthesis model. Accordingly, this paper deals with analysis of the position errors of a machine tool using ball bar test without using complicated error synthesis model. Statistical analysis method was adopted in this paper for deriving position errors using hemispherical helix ball bar test.

  • PDF

Reliability Analysis of Interleaved Memory with a Scrubbing Technique (인터리빙 구조를 갖는 메모리의 스크러빙 기법 적용에 따른 신뢰도 해석)

  • Ryu, Sang-Moon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.443-448
    • /
    • 2014
  • Soft errors in memory devices that caused by radiation are the main threat from a reliability point of view. This threat can be commonly overcome with the combination of SEC (Single-Error Correction) codes and scrubbing technique. The interleaving architecture can give memory devices the ability of tolerating these soft errors, especially against multiple-bit soft errors. And the interleaving distance plays a key role in building the tolerance against multiple-bit soft errors. This paper proposes a reliability model of an interleaved memory device which suffers from multiple-bit soft errors and are protected by a combination of SEC code and scrubbing. The proposed model shows how the interleaving distance works to improve the reliability and can be used to make a decision in determining optimal scrubbing technique to meet the demands in reliability.

Importance of Human Error to Prevent Industrial Accidents (산업 사고 예방을 위한 인적오류의 중요성)

  • Lee, Kwan-Suk;Lee, Young-Kwan
    • Journal of the Ergonomics Society of Korea
    • /
    • v.30 no.1
    • /
    • pp.151-160
    • /
    • 2011
  • There have been many efforts to prevent accidents in Korea for the last 25 years. Many measures in the area of hardware sciences including electrical, mechanical, chemical engineering, etc. were applied to eliminate or at least reduce causes of accidents. However, the accidents rate has not been reduced much despite of these measures. This research aimed to find real causes of these accidents and to suggest a comprehensive model that can mainly be applied to industrial fields to find potential or existence of human errors during the pre-installation stage or after an accident. We tried to explain sequences of an operator's information process that might cause human errors on one hand, and life cycle stages of facilities involved when human errors occur on the other hand. With this comprehensive model presented in this research, one can follow up the sequence of human errors caused by operators. Further, errors made at the design stage which could be a main cause of accidents can be tracked. It is recommended that this comprehensive model should be used to prevent human errors in industrial fields since safety personnel can easily find out errors or error potentials through the life cycle stages of manmachine facilities.

Event date model: a robust Bayesian tool for chronology building

  • Philippe, Lanos;Anne, Philippe
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.2
    • /
    • pp.131-157
    • /
    • 2018
  • We propose a robust event date model to estimate the date of a target event by a combination of individual dates obtained from archaeological artifacts assumed to be contemporaneous. These dates are affected by errors of different types: laboratory and calibration curve errors, irreducible errors related to contaminations, and taphonomic disturbances, hence the possible presence of outliers. Modeling based on a hierarchical Bayesian statistical approach provides a simple way to automatically penalize outlying data without having to remove them from the dataset. Prior information on individual irreducible errors is introduced using a uniform shrinkage density with minimal assumptions about Bayesian parameters. We show that the event date model is more robust than models implemented in BCal or OxCal, although it generally yields less precise credibility intervals. The model is extended in the case of stratigraphic sequences that involve several events with temporal order constraints (relative dating), or with duration, hiatus constraints. Calculations are based on Markov chain Monte Carlo (MCMC) numerical techniques and can be performed using ChronoModel software which is freeware, open source and cross-platform. Features of the software are presented in Vibet et al. (ChronoModel v1.5 user's manual, 2016). We finally compare our prior on event dates implemented in the ChronoModel with the prior in BCal and OxCal which involves supplementary parameters defined as boundaries to phases or sequences.

The Asymptotic Unbiasedness of $S^2$ in the Linear Regression Model with Dependent Errors

  • Lee, Sang-Yeol;Kim, Young-Won
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.235-241
    • /
    • 1996
  • The ordinary least squares estimator of the disturbance variance in the linear regression model with stationary errors is shown to be asymptotically unbiased when the error process has a spectral density bounded from the above and away from zero. Such error processes cover a broad class of stationary processes, including ARMA processes.

  • PDF

An INS Filter Design Considering Mixed Random Errors of Gyroscopes

  • Seong, Sang-Man;Kang, Ki-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.262-264
    • /
    • 2005
  • We propose a filter design method to suppress the effect of gyroscope mixed random errors at INS system level. It is based on the result that mixed random errors can be represented by a single equivalent ARMA model. At first step, the time difference of equivalent ARMA process is performed, which consider the characteristic of indirect feedback Kalman filter used in INS filter. Next, a state space conversion of time differenced ARMA model is achieved. If the order of AR is greater than that of MA, the controllable or observable canonical form is used. Otherwise, we introduce the state equation of which the state variable is composed of the ARMA model output and several step ahead predicts of that. At final step, a complete form state equation is presented. The simulation results shows that the proposed method gives less transient error and better convergence compared to the conventional filter which assume the mixed random errors as white noise.

  • PDF

A method for contingency analysis by using fast correction method of errors (고속 오차수정계산법의 사용에 의한 상정사고 해석법 (개선된 PQ 분리 등가회로를 이용한 고속상정사고 해석법))

  • Song, Gil-Yeong;Kim, Yeong-Han;Choi, Sang-Geu
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.184-188
    • /
    • 1989
  • This paper presents a fast realistic method based on a P-Q decoupled linearized model for contingency analysis. This method involves new idea to correct the errors caused by neglecting the resistance of transmission lines and/or by linearizing the model. The idea is to use fast correction method of errors by the principle of superposition for compensating these errors. Results demonstrating the effectiveness of the method on 25-bus model system and IEEE30-model system are presented

  • PDF

A Robust Fault Detection method for Uncertain Systems with Modelling Errors (모델링 오차를 갖는 불확정 시스템에서의 견실한 이상 검출기)

  • 권오주;이명의
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.7
    • /
    • pp.729-739
    • /
    • 1990
  • This paper deals with the fault detection problem in uncertain linear/non-linear systems having both undermodelling and noise. A robust fault detection method is presented which accounts for the effects of noise, model mismatch and nonlinearities. The basic idea is to embed the unmodelled dynamics in a stochastic process and to use the nominal model with a predetermined fixed denominator. This allows the input /output relationship to be represented as a linear function of the system parameters and also facilitate the quatification of the effect of noise, model mismatch and linearization errors on parameter estimation by the Bayesian method. Comparisons are made via simulations with traditional fault detection methods which do not account for model mismatch or linearization errors. The new method suggested in this paper is shown to have a marked improvement over traditional methods on a number of simulations, which is a consequence of the fact that the new method explicitly for the effects of undermodelling and linearization errors.

Kalman Filter Design For Aided INS Considering Gyroscope Mixed Random Errors (자이로의 불규칙 혼합잡음을 고려한 보조항법시스템 칼만 필터 설계)

  • Seong, Sang-Man
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.47-52
    • /
    • 2006
  • Using the equivalent ARMA model representation of the mixed random errors, we propose Klaman filter design methods for aided INS(Inertial Navigation System) which contains the gyroscope mixed random errors. At first step, considering the characteristic of indirect feedback Kalman filter used in the aided INS, we perform the time difference of equivalent ARMA model. Next, according to the order of the time differenced ARMA model, we achieve the state space conversion of that by two methods. If the order of AR part is greater than MA part, we use controllable or observable canonical form. Otherwise, we establish the state apace equation via the method that several step ahead predicts are included in the state variable, where we can derive high and low order models depending on the variable which is compensated from gyroscope output. At final step, we include the state space equation of gyroscope mixed random errors into aided INS Kalman filter model. Through the simulation, we show that both the high and low order filter models proposed give less navigation errors compared to the conventional filter which assume the mixed random errors as white noise.