• Title/Summary/Keyword: model based design

Search Result 12,261, Processing Time 0.043 seconds

Design of LFT-Based T-S Fuzzy Controller for Model-Following using LMIs (선형 행렬부등식과 분해법을 이용한 퍼지제어기 설계)

  • 손홍엽;이희진;조영완;김은태;박민용
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.123-128
    • /
    • 1998
  • This paper proposes design of LFT-based fuzzy controllers for model-following, which are better than the previous input-output linearization controllers, which are not able to follow the model system states and which do not guarantee the stability of all states. The method proposed in this paper provides a LFT-based Takagi-Sugeno(T-S) fuzzy controller with guaranteed stability and model-following via the following steps: First, using LFT(Linear Fractional Transformation) and T-S fuzzy model, controllers, are obtained. Next, error dynamics are obtained for model-following, and errors go to 0(zero). Finally, a T-s fuzzy controller that can stabilizxe the system with the requirement on the control input satisfied is obtained by solving the LMIs with the MATLAB LMI Control Toolbox and a model-following controller is obtained. Simulations are performed for the LFT-based T-S fuzzy controller designed by the proposed method, which show better performance than the results of input-out ut linearization controller.

  • PDF

Study of u-PBL Support System Core Value and Design Strategy based on Field Experience Learning (현장체험에 터한 u-PBL 교수지원시스템의 핵심가치 및 설계전략 연구)

  • Kim, Du-Guy;Park, Su-Hong
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.24 no.2
    • /
    • pp.180-202
    • /
    • 2012
  • The purpose of this study was to extract an u-PBL support system core value and design strategy based upon field experience learning. To accomplish this the study, first of all, analyzed the core values, design strategy which was selected after needs analysis and literature review of theories and cases regarding the PBL, e-PBL, blended-PBL, Field experience learning based on ubiquitous environment, and learning model based on ubiquitous technology. This study identified the three core values as; systemic support for instructional activity, just in time support for instructional activity and support for interaction facilitation. As further research areas, it might be useful to develop u-PBL instructional support system based upon the model designed from this study. Also, research concerning the verification of the model based upon implementation of the program case might be necessary.

Dominant Design Technology Strategy Based on Open Innovation : High Skewed Propeller(HSP) Design and Production System of Hyundai Heavy Industries Co. (개방형 기술혁신 기반의 지배적 디자인 기술개발 및 확보 전략 : 현대중공업의 HSP(High Skewed Propeller) 설계 및 생산 시스템)

  • Ahn, Yeon S.;Kim, Wha Young
    • Journal of Information Technology Applications and Management
    • /
    • v.25 no.1
    • /
    • pp.1-17
    • /
    • 2018
  • This study presents a research model that demonstrates the dominant design technology strategy for developing and securing dominant design technology based on open innovation. For this purpose, this study developed a strategic model for the development and acquisition of design technology, production technology, and production system of propeller which satisfies the requirements of ship propulsion system required by ship owners and shipbuilders. By studying large propellers for ships, it is possible to embody a strategic model that can be used as a technology development strategy of dominant design that is effective in technology field of other industries. In this study, HSP (High Skewed Propeller) strategy of Hyundai Heavy Industries, which occupies the largest global market share (47.5%, 2007) for more than 30 years until now, is analyzed as a successful case to verify this strategic model. The development and acquisition strategy model of dominant design technology presented in this study consists of four stages : dominant design project strategy, dominant design engineering technology strategy, dominant design production technology strategy, and dominant design production system strategy. The strategic model summarizes the key activities at each stage. In addition, the steps and core activities of this strategic model were confirmed through the case study. As a technology development strategy of HSP products, Hyundai Heavy Industries utilized open innovation technology to cooperate with outside, that is, collaborative research and development with KAIST (Korea Advanced Institute of Science and Technology) research team, and succeeded in achieving technology development of dominant design of HSP products by linking it with HSP technology development and acquisition strategy.

Influence of Correlation Functions on Maximum Entropy Experimental Design (최대엔트로피 실험계획에서 상관함수의 영향)

  • Lee Tae-Hee;Kim Seung-Won;Jung Jae-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.7 s.250
    • /
    • pp.787-793
    • /
    • 2006
  • Recently kriging model has been widely used in the DACE (Design and Analysis of Computer Experiment) because of prominent predictability of nonlinear response. Since DACE has no random or measurement errors contrast to physical experiment, space filling experimental design that distributes uniformly design points over whole design space should be employed as a sampling method. In this paper, we examine the maximum entropy experimental design that reveals the space filling strategy in which defines the maximum entropy based on Gaussian or exponential. The influence of these two correlation functions on space filling design and their model parameters are investigated. Based on the exploration of numerous numerical tests, enhanced maximum entropy design based on exponential correlation function is suggested.

Process Optimal Design in Steady-State Meta Forming considering Strain-Hardening (변형률 경화를 고려한 정상상태 소성가공 공정의 공정 최적설계)

  • 황숭무
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.40-43
    • /
    • 2000
  • A process optimal design methodology applicable to steady-state forming with a strain-hardening material is presented. in this approach the optimal design problem is formulated on the basis of a rigid-viscoplastic finite element process model and a derivative based approach is adopted as an optimization technique The process model the schemes for the evaluation of the design sensitivity considering the effect of strain-hardening and an iterative procedure for design optimization are described. the validity of the proposed approach is demonstrated through application to die shape optimal design in extrusion.

  • PDF

The Use of System for Design Verification of PCI Express Endpoint RTL Core

  • Kim Sun-Wook;Kim Young-Woo;Park Kyoung
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.285-288
    • /
    • 2004
  • In this paper, we present a design and experiment of PCI Express core verification model. The model targeting Endpoint core based on Verilog HDL is designed by newly-emerging SystemC, which is a new C++ class library based system design approach. In the verification model, we designed and implemented a SystemC host system model which acted as Root Complex and device driver dedicated to the PCI Express Endpoint RTL core. The verification process is scheduled by scenarios which are implemented in host model. We show that the model is useful especially for verifying the RTL model which has dependencies on system software.

  • PDF

EXPERIMENT AND SIMULATION OF A WIND-DRIVEN REVERSE OSMOSIS DESALINATION SYSTEM

  • Park, Sang-Jin;Clark C.K. Liu
    • Water Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.1-17
    • /
    • 2003
  • A mathematical model was developed to simulate the performance of a prototype wind-powered reverse osmosis desalination system. The model consists of two sub-models operated in a series. The first sub-model is the wind-energy conversion sub-model, which has wind energy and feed water as its input and pressurized feed water as its output. The second sub-model is a reverse osmosis (RO) process sub-model, with pressurized feed water as its input and the flow and salinity of the product water or permeate as its output. Model coefficients were determined based on field experiments of a prototype wind powered RO desalination system of the University of Hawaii, from June to December 2001. The mathematical model developed by this study predicts the performance of wind-powered RO desalination systems under different design conditions. The system optimization is achieved using a linear programming approach. Based on the results of system optimization, a design guide is prepared, which can be used by both manufacturer and end-user of the wind-driven reverse osmosis system.

  • PDF

A Study on Design and Implementation of a Programming Teaching Model Using Emotional Intelligence

  • Bae, Yesun;Jun, Woochun
    • Journal of Internet Computing and Services
    • /
    • v.19 no.6
    • /
    • pp.125-132
    • /
    • 2018
  • In this paper, we design a programming education model that uses emotional intelligence and apply the model to programming education in elementary school. In our previous work, we found that there is a meaningful correlation between emotional intelligence and programming ability. In this paper, as a follow-up study, we design a programming education model based on a storytelling model and emotional intelligence. In order to test the performance of the proposed model, we applied our proposed model to the 5th grade elementary school students who have no programming experience. Based on extensive survey work and statistical analysis, we found that the experimental group by the programming education using the emotional intelligence got a statistically significant higher achievement than the comparative group by the traditional programming education. We hope that our model will be helpful in programming education in schools.

Stress-Strain Model for Laterally Confined Concrete : Part I. Circular Sectional Members (횡구속 콘크리트의 압축 응력-변형률 모델 : Part I. 원형단면 부재)

  • Sun, Chang Ho;Jeong, Hyeok Chang;Kim, Ick hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.49-57
    • /
    • 2017
  • In order to avoid collapse of bridges in earthquakes bridge piers are generally designed to attain sufficient ductility. This full-ductility design method has merits for securing the seismic safety readily against strong earthquakes but, it has weakness of high cost design because of excessive safety margin. Recently, in many countries with high seismic technologies, the seismic design concept tends to shift from the collapse prevention design to the performance-based one which requires different performance (damage) levels according to the structural importance. In order to establish this performance-based design method the displacement ductility of confined concrete members should be evaluated quantitatively. And the stress-strain model of confined concrete is indispensible in evaluating displacement ductility. In this study, 6 test groups with different lateral reinforcement ratios were prepared. 10 same specimens with circular section for each group were tested to obtain more reliable test results. The characteristic values necessary for composing the stress-strain model were obtained from experiments. Based on these characteristic values the new stress-strain model modifying the Hoshikuma's one has been proposed.

Simulation-based Prediction Model of Draw-bead Restraining Force and Its Application to Sheet Metal Forming Process (유한요소법을 이용한 드로우비드 저항력 예측모델 개발 및 성형공정에의 적용)

  • Bae, G.H.;Song, J.H.;Huh, H.;Kim, S.H.;Park, S.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.06a
    • /
    • pp.55-60
    • /
    • 2006
  • Draw-bead is applied to control the material flow in a stamping process and improve the product quality by controlling the draw-bead restraining force (DBRF). Actual die design depends mostly on the trial-and-error method without calculating the optimum DBRF. Die design with the predicted value of DBRF can be utilized at the tryout stage effectively reducing the cost of the product development. For the prediction of DBRF, a simulation-based prediction model of the circular draw-bead is developed using the Box-Behnken design with selected shape parameters such as the bead height, the shoulder radius and the sheet thickness. The value of DBRF obtained from each design case by analysis is approximated by a second order regression equation. This equation can be utilized to the calculation of the restraining force and the determination of the draw-bead shape as a prediction model. For the evaluation of the prediction model, the optimum design of DBRF in sheet metal forming is carried out using response surface methodology. The suitable type of the draw-bead is suggested based on the optimum values of DBRF. The prediction model of the circular draw-bead proposes the design method of the draw-bead shape. The present procedure provides a guideline in the tool design stage for sheet metal forming to reduce the cost of the product development.

  • PDF