• Title/Summary/Keyword: mobile sensor node

Search Result 242, Processing Time 0.019 seconds

Analysis of Indoor Signal Strength from Zigbee Sensor (지그비 센서의 실내 신호 세기 분석)

  • Lee, Jong-Chan;Park, Sang-Joon;Park, Ki-Hong
    • Convergence Security Journal
    • /
    • v.10 no.2
    • /
    • pp.11-17
    • /
    • 2010
  • Recent technological advances allow us to envision a future where large numbers of low-power, inexpensive sensor devices are densely embedded in the physical environment, operating together in a wireless network. This paper considers localization for mobile sensors; localization must be invoked periodically to enable the sensors to track their location. Localizing more frequently allows the sensors to more accurately track their location in the presence of mobility. In this paper, we test and analyze the accuracy of a moving node localization by Received Signal Strength (RSS).

Remote Navigation and Monitoring System for Mobile Robot Using Smart Phone (스마트 폰을 이용한 모바일로봇의 리모트 주행제어 시스템)

  • Park, Jong-Jin;Choi, Gyoo-Seok;Chun, Chang-Hee;Park, In-Ku;Kang, Jeong-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.6
    • /
    • pp.207-214
    • /
    • 2011
  • In this paper, using Zigbee-based wireless sensor networks and Lego MindStorms NXT robot, a remote monitoring and navigation system for mobile robot has been developed. Mobile robot can estimate its position using encoder values of its motor, but due to the existing friction and shortage of motor power etc., error occurs. To fix this problem and obtain more accurate position of mobile robot, a ultrasound module on wireless sensor networks has been used in this paper. To overcome disadvantages of ultrasound which include straightforwardness and narrow detection coverage, we rotate moving node attached to mobile robot by $360^{\circ}$ to measure each distance from four fixed nodes. Then location of mobile robot is estimated by triangulation using measured distance values. In addition, images are sent via a network using a USB Web camera to smart phone. On smart phones we can see location of robot, and images around places where robot navigates. And remote monitoring and navigation is possible by just clicking points at the map on smart phones.

Grid-based Energy Efficient Routing Protocol for Sensor Networks (센서 네트워크를 위한 그리드 기반의 에너지 효율절인 라우팅 프로토콜)

  • Jung, Sung-Young;Lee, Dong-Wook;Kim, Jai-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.14 no.2
    • /
    • pp.216-220
    • /
    • 2008
  • Sensor nodes in wireless network have several limitations such as lack of energy resource and network bandwidth. There are many researches to extend lifetime of sensor network and enhance availability. However, most of the previous researches didn't consider the mobile sink node. Those researches aren't suitable in the environment having mobile sinks. In this paper. we propose a scheme that reduces communication overheads and energy consumptions and improves reliability in routing path setup. Proposed scheme has excellent scalability without degrading performance in environment where many sink nodes exist and/or the network size is huge. Proposed scheme saves the energy consumption up to 70% in comparison with the previous grid-based and cluster-based protocol. As a result, proposed scheme increases the lifetime of sensor network and enhances availability of wireless sensor network.

A Secure Routing Scheme for Wireless Sensor Network with a Mobile Sink (이동 싱크를 가진 무선 센서 네트워크의 안전한 라우팅 기법)

  • Kim Taekvun;Kim Sangjin;Lee Ik-Seob;Yoo Dongyoung;Oh Heekuck
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.2
    • /
    • pp.53-64
    • /
    • 2005
  • Previous secure routing protocols for wireless sensor networks assume that a sink is static. In many cases, however, a sink operated by man or vehicle is moving. A mobile sink creates a lot of technical problems such as reconfiguration of routing path exposure of sink location. and selection of secure access point node, which are not considered by many previous researches. In this paper, we propose a new secure routing scheme for solving such problems using hi-directional hash chain and delegation nodes of grid structure. This scheme provides a secure routing path and prevents attacker from recognizing the location of a mobile sink in sensor networks. This new method reduces the resource requirements compared to the cashed routing schemes. Simulation results also show that the system is secure and efficient enough.

A Study on Methodology for energy efficiency in WSN (WSN 환경에서의 에너지 효율성을 위한 방법론 연구)

  • Park, Hee-Jung;Kim, Kyung-Tae;Youn, Hee-Young
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.01a
    • /
    • pp.353-354
    • /
    • 2014
  • 무선 센서 네트워크(WSN)환경에서는 저가의 센서 노드를 구성하기 위해 배터리, 제한된 에너지 등과 같은 하드웨어적인 제약을 갖고 있다. 특히, 센서 노드의 제한된 에너지는 네트워크 수명과 직접적인 관련이 있기 때문에 네트워크의 수명을 연장하기 위한 효율적인 기법들이 요구되는 실정이다. 이를 위해 본 논문에서는 WSN환경에서 고정 노드와 모바일 노드를 혼용하여 음영지역을 최소화할 수 있는 모바일 노드 이동 기법을 제안한다. 이는 대표 노드를 선정하여 네트워크의 밀도를 제어하고 각 노드들의 거리에 따라 신호 세기를 제어한다. 이를 통해 네트워크 지역의 확장과 각 노드의 에너지를 효율적으로 사용할 수 있다.

  • PDF

LP-MAC Technique in association with Low Power operation in unmanned remote wireless network (무인원격 무선 네트워크 환경에서의 저전력 운용을 고려한 LP-MAC 기법)

  • Youn, Jong-Taek;Ryu, Jeong-Kyu;Kim, Yongi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1877-1884
    • /
    • 2014
  • Because of the limited power resource, we need a reliable low-power media access control technique suitable for unmaned remote sensor operation condition for the unmanned sensor processor to perform the task in the remote wireless network situation. Therefore CSMA/CA and X-MAC is generally considered to effectively transmit the signal in the low-power wireless network. In this paper, we propose the more efficient low-power LP-MAC Technique which consumes the minimum power and transmits the data faster in condition that the mobile nodes' joining to and leaving from the network which consists of the fixed nodes is fluid. The fixed nodes operate in an asynchronous mode to perform the network self-configuration and transmit data faster to the mobile node which is frequently join and leave the network. When the mobile node leaves the network, the network's operation mode will be synchronous mode to achieve the minimum power consumption, thus the minimum power operation becomes possible.

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선 센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Chung, Wan-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.375-378
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. It is loaded indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks. Spartan III(Xilinx, U.S.A.) is used as a main control device in the mobile robot and the current direction data is collected in the indoor location estimation system. The data is transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

  • PDF

RSSI based Intelligent Indoor Location Estimation Robot using Wireless Sensor Network technology (무선센서네트워크 기술을 활용한 RSSI기반의 지능형 실내위치추정 로봇)

  • Seo, Won-Kyo;Jang, Seong-Gyun;Shin, Kwang-Sik;Lee, Eun-Ah;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.6
    • /
    • pp.1195-1200
    • /
    • 2007
  • This paper describes indoor location estimation intelligent robot. Indoor location estimation function using RSSI based indoor location estimation system and wireless sensor networks were implemented in the robot. Spartan III(Xilinx, U.S.A.) was used as a main control device in the mobile robot and the current direction data was collected in the indoor location estimation system. The data was transferred to the wireless sensor network node attached to the mobile robot through Zigbee/IEEE 802.15.4, a wireless communication. After receiving it, with the data of magnetic compass the node is aware of and senses the direction the robot head for and the robot moves to its destination. Indoor location estimation intelligent robot is can be moved efficiently and actively without obstacle on flat ground to the appointment position by user.

The Efficient Ship Wireless Sensor Network Using Drone (드론을 활용한 효율적인 선박 센서 네트워크)

  • Hong, Sung-Hwa;Kim, Byoung-Kug
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.122-127
    • /
    • 2022
  • Currently, the drone is considered as a mobile base station of USN as a method to act as a base station using USN in existing LTE-M and LTE networks for data transmission in unmanned ships. Therefore, the drone, which is a mobile base station, is a sink node equipped with an LTE modem or a short-range communication modem, and can collect safety information of ship operation from the sensor node and transmit the safety information to the ship or transmit the information between the ships. As, if a short-range network is formed by using drones, it will form a communication network around unmanned ships and will be advantageous for collecting information using security and environmental sensors. In this paper, we propose a method to transmit environmental sensor data and to utilize communication between ships using drones to secure the surrounding information necessary for AI operation of unmanned ships in the future.

An Energy-Efficient Algorithm for Solving Coverage Problem and Sensing Big Data in Sparse MANET Environments (희소 모바일 애드 혹 네트워크 환경에서 빅데이터 센싱을 위한 에너지 효율적인 센서 커버리지 알고리즘)

  • Gil, Joon-Min
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.11
    • /
    • pp.463-468
    • /
    • 2017
  • To sense a wide area with mobile nodes, the uniformity of node deployment is a very important issue. In this paper, we consider the coverage problem to sense big data in sparse mobile ad hoc networks. In most existing works on the coverage problem, it has been assumed that the number of nodes is large enough to cover the area in the network. However, the coverage problem in sparse mobile ad hoc networks differs in the sense that a long-distance between nodes should be formed to avoid the overlapping coverage areas. We formulate the sensor coverage problem in sparse mobile ad hoc networks and provide the solution to the problem by a self-organized approach without a central authority. The experimental results show that our approach is more efficient than the existing ones, subject to both of coverage areas and energy consumption.