• 제목/요약/키워드: mobile robot control

검색결과 1,465건 처리시간 0.032초

실내 환경에서의 이동로봇 제어를 위한 유비쿼터스 인터페이스 시스템 (A Ubiquitous Interface System for Mobile Robot Control in Indoor Environment)

  • 안현식;송재성
    • 제어로봇시스템학회논문지
    • /
    • 제12궈1호
    • /
    • pp.66-71
    • /
    • 2006
  • Recently, there are lots of concerning on ubiquitous environment of robots and URC (Ubiquitous Robotic Companion). In this paper, a practical ubiquitous interface system far controlling mobile robots in indoor environments was proposed. The interface system was designed as a manager-agent model including a PC manager, a mobile manager, and robot agents for being able to be accessed by any network. In the system, the PC manager has a 3D virtual environment and shows real images for a human-friendly interface, and share the computation load of the robot such as path planning and managing geographical information. It also contains Hybrid Format Manager(HFM) working for transforming the image, position, and control data and interchanging them between the robots and the managers. Mobile manager working in the minimized computing condition of handsets has a mobile interface environment displaying the real images and the position of the robot and being able to control the robots by pressing keys. Experimental results showed the proposed system was able to control robots rising wired and wireless LAN and mobile Internet.

자율이동로봇의 명령 교시를 위한 HMM 기반 음성인식시스템의 구현 (Implementation of Hidden Markov Model based Speech Recognition System for Teaching Autonomous Mobile Robot)

  • 조현수;박민규;이민철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.281-281
    • /
    • 2000
  • This paper presents an implementation of speech recognition system for teaching an autonomous mobile robot. The use of human speech as the teaching method provides more convenient user-interface for the mobile robot. In this study, for easily teaching the mobile robot, a study on the autonomous mobile robot with the function of speech recognition is tried. In speech recognition system, a speech recognition algorithm using HMM(Hidden Markov Model) is presented to recognize Korean word. Filter-bank analysis model is used to extract of features as the spectral analysis method. A recognized word is converted to command for the control of robot navigation.

  • PDF

Development of a Mobile Robot System for Visual Inspection under Hot Environment

  • Park, Sang-Deok;Lee, Ho-Gil;Kim, Hong-Seok;Son, Woong-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2004년도 ICCAS
    • /
    • pp.1506-1510
    • /
    • 2004
  • A mobile robot system is developed to inspect the condition of industrial facilities under hot environment. The mobile robot is equipped with internal and external heat insulating material, an internal cooling mechanism, two CCD cameras, wireless communication devices for both the control and image signals, and an embedded controller. The portable controller is equipped with two joysticks for both the mobile robot and the inspection CCD camera, an LCD monitor, and several buttons. The developed mobile robot travels on the internal floor in hot furnaces by operators' joystick operation, captures the images of facilities in the furnaces using a zoom CCD camera, and sends the images to the portable controller through wireless communication. The mobile robot can be operated without any problem under hot environment less than 400$^{\circ}C$ in 30 minutes. This kind of automatic inspection mobile robot can be helpful to prevent significant troubles of industrial facilities without danger of human beings under harmful environment.

  • PDF

아이폰 기반의 이동로봇 시뮬레이터 개발 (Development of a Simulator for a Mobile Robot Based on iPhone)

  • 김동헌
    • 한국지능시스템학회논문지
    • /
    • 제23권1호
    • /
    • pp.29-34
    • /
    • 2013
  • 본 논문은 애드혹 통신을 기반으로 아이폰의 가속도 센서를 사용하여 이동로봇을 무선 제어하는 연구에 대하여 다룬다. 이동로봇을 아이폰으로 무선제어하기 위한 방법으로 사용자 원격제어와 자율제어 방법이 제안되었다. 궤적 추종제어 알고리즘의 효율성을 평가하기 위하여 아이폰의 인터페이스를 기반으로 모니터에 그려진 궤적을 가상로봇이 추종하는 시뮬레이터를 개발하였다. 제안된 시뮬레이터에서는 궤적 추종제어를 위해 이동로봇을 제어할 때 컴퓨터에서 해당 알고리즘을 이용하여 미리 시뮬레이션이 가능하며 사용자에 의한 원격제어와의 결과 비교도 보여준다. 연구의 결과로 제안된 시뮬레이터가 이동로봇에 자율이동제어 방법을 사용할 때, 자율추종 알고리즘의 적합성과 효율성을 미리 검사 하는데 사용될 수 있음을 보여준다.

아크센서를 적용한 격자형 용접용 모빌 로봇의 제어 (Motion Control of Mobile Robot with Arc Sensor for Lattice Type Welding)

  • 전양배;한영대;김상봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.319-324
    • /
    • 2001
  • This paper presents the motion control of a mobile robot with arc sensor for lattice type welding. Its dynamic equation and motion control method for welding speed and seam tracking are described. The motion control is realized in the view of keeping constant welding speed and precise target line even though the robot is driven along a straight line or corner. The mobile robot is modeled based on Lagrange equation under nonholonomic constraints and the model is represented in state space form. The motion control of the mobile robot is separated into three driving motions of straight locomotion, turning locomotion and torch slider controls. For the torch slider control, the proportional integral derivative (PID) control method is used. For the straight locomotion, a concept of decoupling method between input and output is adopted and for the turning locomotion, the turning speed is controlled according to the angular velocity value at each point of the comer with range of $90^{\circ}$ constrained to the welding speed. The experiment has been done to verify the effectiveness of the proposed controllers. These results are shown to fit well by the simulation results.

  • PDF

마그네틱 콤파스 기반의 전 방향 로봇의 방위각 제어 (Azimuth Tracking Control of an Omni-Directional Mobile Robot(ODMR) Using a Magnetic Compass)

  • 이정형;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.132-138
    • /
    • 2009
  • In this paper, control of an omni-directional mobile robot is presented. Relying on encoder measurements to define the azimuth angle yields the dead-reckoned situation which the robot fails in localization. The azimuth angle error due to dead-reckoning is compensated and corrected by the magnetic compass sensor. Noise from the magnetic compass sensor has been filtered out. Kinematics and dynamics of the omni-directional mobile robot are derived based on the global coordinates and used for simulation studies. Experimental studies are also conducted to show the correction by the magnetic compass sensor.

Singularity-Free Dynamic Modeling Including Wheel Dynamics for an Omni-Directional Mobile Robot with Three Caster Wheels

  • Chung, Jae-Heon;Yi, Byung-Ju;Kim, Whee-Kuk;Han, Seog-Young
    • International Journal of Control, Automation, and Systems
    • /
    • 제6권1호
    • /
    • pp.86-100
    • /
    • 2008
  • Most of the previously employed dynamic modeling approaches, including Natural Orthogonal Complement Algorithm, have limitations on their application to the mobile robot, specifically at singular configurations. Also, in their dynamic modeling of mobile robots, wheel dynamics is usually ignored assuming that its dynamic effect is negligibly small. As a remedy for this, a singularity-free operational space dynamic modeling approach based on Lagrange's form of the D' Alembert principle is proposed, and the singularity-free characteristic of the proposed dynamic modeling is discussed in the process of analytical derivation of the proposed dynamic model. Then an accurate dynamic model taking into account the wheel dynamics of the omni-directional mobile robot is derived, and through simulation it is manifested that the effect of the wheel dynamics on the whole dynamic model of the mobile robot may not be negligible, but rather in some cases it is significantly large, possibly affecting the operational performances of dynamic model-based control algorithms. Lastly, the importance of its accurate dynamic model is further illustrated through impulse analysis and its simulation for the mobile robot.

Geometric Kinematics and Applications of a Mobile Robot

  • Kim, Dong-Sung;Kwon, Wook-Hyun;Park, Hong-Sung
    • International Journal of Control, Automation, and Systems
    • /
    • 제1권3호
    • /
    • pp.376-384
    • /
    • 2003
  • In this paper, the simple geometric kinematics of a three-wheeled holonomic mobile robot is proposed. Wheel architecture is developed for the holonomic mobile platform in order to provide omni-directional motions by three individually driven and steered wheels. Three types of basic motions are proposed for the path generation of the developed mobile robot. All paths of the mobile robot can be achieved through a combination of the proposed basic motion trajectories. The proposed method is verified through computer simulations and the developed mobile robot.

레이저 센서 기반의 Cascaded 제어기 및 신경회로망을 이용한 이동로봇의 위치 추종 실험적 연구 (Experimental Studies of a Cascaded Controller with a Neural Network for Position Tracking Control of a Mobile Robot Based on a Laser Sensor)

  • 장평수;장은수;전상운;정슬
    • 제어로봇시스템학회논문지
    • /
    • 제10권7호
    • /
    • pp.625-633
    • /
    • 2004
  • In this paper, position control of a car-like mobile robot using a neural network is presented. positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as a reference, the robot posture is corrected by a cascaded controller. To improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The neural network functions as a compensator to minimize the positional errors in on-line fashion. A car-like mobile robot is built as a test-bed and experimental studies of several controllers are conducted and compared. Experimental results show that the best position control performance can be achieved by a cascaded controller with a neural network.

Neural Network Based Guidance Control of a Mobile Robot

  • Jang, Pyoung-Soo;Jang, Eun-Soo;Jeon, Sang-Woon;Jung, Seul
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.1099-1104
    • /
    • 2003
  • In this paper, the position control of a car-like mobile robot using neural network is proposed. The positional information of the mobile robot is given by a laser range finder located remotely through wireless communication. The heading angle is measured by a gyro sensor. Considering these two sensor information as references, the robot posture by localization is corrected by a cascaded controller. In order to improve the tracking performance, a neural network with a cascaded controller is used to compensate for any uncertainty in the robot. The remotely located neural network filter modifies the reference trajectories to minimize the positional errors by wireless communication. A car-like mobile robot is built as a test-bed and experimental studies of proposed several control algorithms are performed. It turns out that the best position control can be achieved by a cascaded controller with neural network.

  • PDF