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Singularity-Free Dynamic Modeling Including Wheel Dynamics for

an Omni-Directional Mobile Robot with Three Caster Wheels

Jae Heon Chung, Byung-Ju Yi*, Whee Kuk Kim, and Seog-Young Han

Abstract: Most of the previously employed dynamic modeling approaches, including Natural
Orthogonal Complement Algorithm, have limitations on their application to the mobile robot,
specifically at singular configurations. Also, in their dynamic modeling of mobile robots, wheel
dynamics is usually ignored assuming that its dynamic effect is negligibly small. As a remedy for
this, a singularity-free operational space dynamic modeling approach based on Lagrange’s form
of the D’Alembert principle is proposed, and the singularity-free characteristic of the proposed
dynamic modeling is discussed in the process of analytical derivation of the proposed dynamic
model. Then an accurate dynamic model taking into account the wheel dynamics of the omni-
directional mobile robot is derived, and through simulation it is manifested that the effect of the
wheel dynamics on the whole dynamic model of the mobile robot may not be negligible, but
rather in some cases it is significantly large, possibly affecting the operational performances of
dynamic model-based control algorithms. Lastly, the importance of its accurate dynamic model is

further illustrated through impulse analysis and its simulation for the mobile robot.

Keywords: Dynamics, impact, kinematics, omni-directional mobile robot.

1. INTRODUCTION

Most mobile robots have closed kinematic chains
like parallel robots. One part of each wheel of the
mobile robot is interfaced with the ground, and the

other part is connected to the body of the mobile robot.

Thus, each wheel can be treated as a serial sub-chain
in a parallel mechanism [2,3]. Particularly, for a
mobile robot to have omni-directional characteristics
on the planar surface, each wheel attached to the
mobile robot must have three degrees of freedom.
Either the caster wheel or the Swedish wheel can be
modeled kinematically as a three-degrees-of-freedom
serial chain. However, it is known that both the
Swedish wheel and most other types of “omni-
directional wheels” are very sensitive to road
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conditions and thus their operational performances are
more or less limited, compared to conventional wheels.
In contrast, the active caster wheel is relatively easy to
build and insensitive to road conditions, even being
able to overcome small bumps encountered in uneven
floors.

Campion, ef al. [1] addressed the fact that the omni-
directional mobile robot with three caster wheels must
use more than four motors to avoid singularity, and
that as an admissible configuration, two motors on
two of the three wheels should be used. However,
their work does not provide any closed-form
dynamics for omni-directional mobile robots. Saha
and Angeles [4] proposed an orthogonal complement-
based, closed-form dynamic model for the 2 DOF
differentially driven mobile robot. Yi, et al [5]
extended this methodology to a 3 DOF omni-
directional mobile robot with three caster wheels.
However, this approach suffers from algorithmic
singularity, depending upon the choice of minimum
coordinates for which the system dynamics is
referenced or expressed. To cope with this problem,
the set of minimum coordinates should be changed
from one to another. However, this is also
inconvenient and thus a singularity-free dynamic
formulation is demanded.

In general robotic fields, dynamic model-based
control is demanded to ensure more enhanced system
performance of systems. Up to now, the effect of the
wheel dynamics on the whole dynamics of the mobile
system has not been examined intensively. Accurate
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dynamic model taking into account the wheel
dynamics of the omni-directional mobile robot would
be beneficial.

In light of these facts, this paper introduces a
singularity-free, accurate dynamic model including
the wheel dynamics for the omni-directional mobile
robot having three active caster wheels. The
singularity-free  characteristic of the proposed
dynamic modeling methodology will be shown in the
process of analytical derivation of the proposed
dynamic model. Through simulation, the discrepancy
of the incomplete dynamic model is shown by
comparison with the exact dynamic model.

2. KINEMATIC MODELING

Mobility is known as the number of minimum input
parameters required to specify all the locations of the

system relative to another. Griibler’s formula
describing mobility is given by [3]
J
M=N(L-1)-3 (N-F), M

i=1

where N, L, J, and F; denote the dimensions of the
allowable motion space spanned by all joints, the
number of links, the number of joints, and the motion
degree of freedom of the " joint, respectively.

(b)

Fig. 1. Instantaneous kinematic model of wheels.

Consider a mobile robot with three caster wheels
shown in Fig. 1(a). Assume that every wheel
maintains a point contact with the ground and that the
wheel does not slip in the horizontal direction while
being allowed to rotate about the vertical axis. Then,
the motion of each wheel mechanism can be modeled
as two revolute joints and one prismatic joint as
shown in Fig. 1(b). The first revolute joint describes
the ground-wheel interface. It denotes the rotational
motion of the wheel and offset steering link about the
vertical axis passing through the ground contact point.
The prismatic joint describes the translational motion
of the center of the wheel. The second revolute joint
represents the rotation of the mobile platform relative
to the offset steering link. Here, the x-axis of the
mobile platform is given as the reference line.
Mobility for this mechanism is easily obtained as 3
from (1). Note that holonomic constraints have the
same differential form as non-holonomic constraints.
Thus, mobility can be obtained by examining the
instantaneous motion of the mobile robot (i.e.,
velocity level) at the current configuration unless it is
in singular configuration. It is remarked that the
position of the interface with the ground (i.e., the
position of base of the mobile robot) is continuously
moving as shown in Fig. 1(b), while the positions of
usual parallel manipulators having holonomic
constraints are stationary.

Fig. 2 depicts the kinematic description of an omni-
directional mobile robot. This system consists of three
wheels, three offset steering links, and a mobile
platform. First, assume that the output motion of the
mobile robot occurs in the planar domain. XYZ
represents the global reference frame, and xyz denotes
a local coordinate frame attached to the mobile
platform; i, j, and k are the unit vectors of the xyz
coordinate frame. C denotes the origin of the local
coordinate. We define 0 as the rotating angle of the

Wheel #2

Fig. 2. Kinematic description of the omni-directional
mobile robot.
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wheel and ¢ as the steering angle between the
steering link and the local x-axis. 7 denotes the

angular displacement of the wheel relative to the X-
axis of the reference frame. r and d denote the radius
of the wheel and the length of the offset steering link,
respectively. Define the output velocity of the mobile
robotas

a:ﬁftﬂi Q)

T
where v, =[ch ch] and @ represents the

translational velocity vector of the platform center C
and the angular velocity of the body frame about the
vertical axis, respectively. In the following analysis,
we assume that the wheel contacts the ground at a
point and that the rotational motion of the wheel is
allowed about the axis passing through the center of
the wheel and the contact point.

The linear velocities at the center of each of the
three wheels can be expressed as

v, =6 (singi +cosgyj) x rk, (3)

Vo2 = 6, (singyi +cos @) x 7k, 4
and

V,3 = 65 (singsi + cos g3 ) x k. (%)

The linear velocity at C of the mobile robot can be
described, for each of the three wheels, respectively,
as

VC =V01 +771kX01A1 +0)ka

=6 (singi + cosgyj) x rk
+ 7k x(—d cosgyi + dsingy j+ hk) 6

+a)k><(£i+aj),
2
V. =V02 +772kX02A2 '|'a)k><14_(_:7

=0, (sinpyi +cos g, ) x rk
+ 1,k x (—d cos gy + d sin g, j + hk)) (7
+ ok x [—-éh—ajj,
and
V. =V,3 +ﬁ3kx@+a)kx2;6
= 0 (sin @51 + cos g3 ) x k ®
+ 173k x(—d cos g3i + dsin g3 j + k)
+ ok x (-bj),
where @ representing the angular velocity of the

mobile platform can also be described, for each of the
three wheels, respectively, as

o =1+, ©)

O=1+¢, (10)
and

® =15 + 5. (11)

vV, = [ch Ve :IT in (6) through (8) and @ in (9)

through (11) can be expressed in one matrix form
given by

_ch 1 [ -dsin @ —a rcosgy  —allm
vy |=| —dcosgy +1/2 -rsingy /2 6 |,
o | | 1 0 1 ||&y
o (12)
I o 1 [ —dsin @ —a rcosg, —a ||m
Vo |=| —dcosg, —12 -rsing, -I/2 6, |,
o | | 1 0 1 ||¢
o (13)
and
I cx_ —dsing; +b rcosey b1
Vey |=| —dcosgy  -rsing; 0 93 . (14)
) 1 0 L o
Equations (12)-(14) represent the first-order

kinematics of the mobile robot, and they are
instantaneously equivalent to that of a typical parallel
robot that is connected to a fixed ground. The variable

(77; ) is defined as an absolute angular displacement of

the wheel about the vertical axis with respect to the
global frame. In fact, this variable plays the role of
interfacing the wheel to the ground. Practically, (12)-
(14) represent the forward velocity equations for the
three wheels of the mobile robot and each matrix in

the right hand side is expressed as [ iGg ] for i=1,2,3.

Now, the intermediate coordinate transfer method
[6], which is systematic and effective in analysis and
modeling of parallel robots, will be employed to
derive the forward kinematic relation. Taking the
inverse of (12)-(14), we have

)
6 |=062m (15)
M
[ ) . ]
—rsing, —rcosg Ercosgol—arsmq;l
1 . [ . .
=—1/| dcosgy —dsing; —dsing +adcosg u,
dr 2
rsing;  rcosq dr+arsin(p1—ércosqo1
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1 |
b |-Gl (16)
P |
- ; | -
—rsing, -rcosg, 57 Cospy —arsing,
| . !, . .
== dcosp, —dsing, —Edsm ¢, +adcosp, |u,
-
rsing, rcosg, dr+arsing, +ércos¢2
and
73 |
6 | =13G{ i (17)
s |
. —rsing; —rcosgy brsin gy
=% dcospy —dsing;  —bdcosg; |
r
rsing;  rcosg;  dr—brsing,

As shown in (15)-(17), there are nine joint variables.

Among these nine joint variables only three joint
variables can be selected as independent joint
variables since the mobile robot has mobility three.
The remaining six joint variables can be expressed in
terms of the independent joint variables due to the
kinematic constraints of the mobile robot. Note that
the desired active input vector can be selected out of
the remaining six joint variables excluding the three
intrinsically passive variables (7; ), which cannot be
actuated in joint space.

For abbreviation, the forward and inverse matrices
are given in (12)-(14), and (15)~(17) are expressed as

[ iGZ} and [,Gf}, respectively. The acceleration

relationship between the output vector and the input
joint vector of each wheel can be expressed as

ﬁ:[iGﬂ i@+ ¢_5T[Z.H;¢],.é, (18)

where [iH%] is a three dimensional array and

denotes the variation of the Jacobian (i.e., Hessian)
with respect to the joint angle and is defined as
(Appendix A.1)

5] 5 {[68])

The Hessian [iH gyj} describes that it affects the

velocity of the operational space set (u) on the
acceleration of the i chain joint variable, and it has
M x N xN dimensions. M and N denote the number

of the output and the number of the input joints,

respectively. The inverse relationship of (18) is given
by
b= 62 Ji+a” [ mf, |, (19)

iz

where

[t =L ot (Lot )L ) et

and the operator '=', called Generalized Scalar Dot
Product (Appendix A.2), is employed to simplify the
final form of this second-order inverse kinematic
model. For a detailed description of the kinematic
modeling method for parallel mechanisms used in this
section, refer to Freeman and Tesar [6] and Yi and

Freeman [7]. As further notations, [,Gf ] and
E

[,-H fu] _denoting the /" row of the Jacobian and the

2

" plane of the Hessian matrix at the /" chain,

respectively, will be adopted in the following sections.
3. DYNAMIC MODELING

In general, three main methodologies, categorized
as the Recursive Newton-Euler formulation [4,8], the
Lagrange-Euler method [9], and Lagrange’s form of
the Generalized Principle of D’Alembert (open-tree
structure method) [3,6,10,11] have been extensively
investigated for the dynamic modeling of robots. All
these efforts have contributed to the progress in
dynamic modeling for robots.

In this section, two dynamic modeling approaches,
the Natural Orthogonal Complement Algorithm [4]
and the dynamic modeling approach employing
Lagrange’s form of the D’ Alembert principle [6], are
discussed to derive the dynamic model of the omni-
directional mobile robot having three caster wheels.

3.1. The natural orthogonal complement algorithm

Saha and Angeles [4] employed the concept of
orthogonal complement modeling algorithm using the
matrix of non-holonomic constraints to develop a
closed-form dynamic model for a differential-driven 2
DOF mobile robot. Later, Yi, ef al. [5] extended this
concept to derive the dynamic model of a 3 DOF
omni-directional mobile robot with three -caster
wheels. As mentioned before, this mobile robot
possesses three kinematic chains and each chain
consists of two bodies, a wheel, and a steering link as
shown in Fig. 3.

The natural orthogonal complement algorithm
converts the dynamic model derived in terms of
Lagrangian coordinates into that in terms of minimum
coordinates by embedding non-holonomic constraints.
During the process of the dynamic modeling, it is
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#4

#1 #5 42 J
Fig. 3. Disassembled mobile robot.

necessary to obtain the internal kinematic relationship
between the independent (or minimum) coordinates

(¢_5a) and the dependent coordinates (ép ). It is given
by
Jpq_ﬂp =J.4_, (20)

where J, is always a square matrix. Then, the mapping
relation between ¢ and ¢a is expressed as

b =T, 21

where the invertibility of J, is associated with
singularity. The detailed derivations of (20)-(21) are
shown in the Appendix A.3.

The velocity (or twist ¢ ) of each individual body

can be written as a linear transformation (Gp , Ga) of

the joint rates of each kinematic chain, and the
congregation of the twists of all rigid-bodies can be
denoted as a generalized twist, given by

g:Gpgﬁp +G, 4, (22)

T
where gz[ng ,...,g;] . Substituting the relation

given in (21) into (22), the generalized twist (¢) and
the change of twist can be written in terms of the

independent joint rates (ﬂa) as

Gé , (23)

—a

Gp_+G¢_, (24)

!

{

It

where G=G,+G,J;'J,.

Now, the non-holonomic constraint given by G will
be embedded into the system dynamics expressed in
terms of the Lagrangian coordinates.

The unconstrained Newton-Euler equation can be

expressed as
Mi=-WMt+wE +wC. (25)

Substituting (23)-(24) into the unconstrained Newton-
Euler equation, the unconstrained Newton-Euler
equation can be expressed as

MG§_=-(MG+WMG)g +w’ +w"  (26)

in terms of the independent coordinates, where M, W,

wP and w® denote matrix of generalized mass, matrix
of generalized angular velocity, generalized external
wrench and nonworking constraint wrench,
respectively. By applying the constrained relation, the
constrained dynamic equation is expressed as [4]

G MG =-G" (MG +WMG)$_+1, @7

where GTw” =7 and GTw® =0 denote the joint

torque vector and non-working term, respectively. Re-
arranging (27) yields the Euler-Lagrange dynamic
equation in terms of the independent coordinates:

ZZ](é)éa +C(?’éa)éa’ (28)
1(¢)=G" MG, (29)
C(¢.4,)=6" (MG+wMmG), (30)

T
where ¢ = [¢Z ,¢T } denotes the Lagrangian coordi-

nates of the system. [ (Q) and C (é,(z_}a) denotes

the inertia matrix term and centrifugal and Coriolis
terms, respectively. The shortcoming of this algorithm
comes from the inversion of J, in (21). Yi and Kim [2]
addressed that an algorithmic singularity would
happen in the omni-directional mobile robot having
three caster wheels, when the reciprocal screws of the
three independent joints meet at one common position
or at infinity. It is observed from (27) that this
kinematic singularity propagates to dynamics since
the dynamic model requires the inversion of J,. When
employing the natural orthogonal complement
algorithm in the dynamic modeling of the mobile
robot, the set of independent coordinates needs to be
updated frequently by the other appropriate sets that
are not in singularity configuration to ensure that the
dynamic model is valid. However, it doesn’t seem
natural or convenient.

3.2. Lagrange’s Form of the D’ Alembert Principle

A dynamic modeling approach employing
Lagrange’s form of the D’Alembert principle [6] is
employed to resolve the singularity problem. The
omni-directional mobile robot is a closed-chain
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system that consists of three kinematic chains. As a
first step to derive the dynamic model of the closed-
chain system, the system is converted into a several
open-tree structure by cutting appropriate joints of the
closed chains. Then, by using the Lagrange dynamic
formulation, the dynamic model for each of the serial
chains is evaluated. Lastly, by using the virtual work
principle, the open chain dynamics can be directly
incorporated into closed chain dynamics (for instance,
into joint-space dynamics or into operational-space
dynamics).

Fig. 4 shows the open-tree structure of the mobile
robot, formed by cutting joints of closed chains.
Initially, the Lagrange formulation to obtain the
dynamic model for each of the serial sub-chains is
described. Lagrangian is defined as

L(@,é):k(@,é)—u(e). (31)

In (31), the potential energy u(€) can be ignored
since it is assumed that the mobile robot moves only
in the planar domain. Reflecting this fact, the
Lagrange dynamic equation can be expressed as

d ok 0ok
————-—=7, (H
dtog 0660 ~
where r is the nXx 1 joint torque vector and &k
represents the total kinetic energy of each open chain,

which is the sum of the kinetic energies of all rigid
bodies in the corresponding open chain:

n
k=>k. (33)
i=1
The kinetic energy of the i” rigid body, %;, can be
expressed as '
bl T i 7¢ I% 34
1 =5 Mve e +§ o ;o (34

where the first term and the second term represent the

44

Fig. 4. An open-chain model of the mobile robot.

translational and rotational kinetic energy of the rigid
body i, respectively. v, and ia)i represent absolute

velocity of the mass center of the i link and the
angular velocity of the i link with respect to local
frame fixed at the mass center, respectively. m; and

Cill- are the mass and local inertia matrix of the ;"

link, respectively.

Note that each serial sub-chain representing one
wheel of the mobile robot consists of two bodies: a
wheel and an offset link as shown in Fig. 4. The linear
velocity at the center of each wheel (1, 2, and 3) and
the angular velocity of the corresponding wheel can
be described as
by =r(cos¢9ii-sin¢)ij)9i (35)

<
and

’Zoc1 =nk+6; (sin @;i +cos ;) (36)

respectively. The linear velocity at the center of each
offset link (5, 6, and 7) and the angular velocity of the
corresponding link can be described as

Ve =vp, + 1k x(—pcosgi+ psing;j) (37)

and

‘o, =1k, (38)
respectively. The parameter p denotes the distance
from the center of each wheel to the center of mass of
each offset link. The kinetic energies of the wheel and
the offset link of the /" chain are expressed,
respectively, as

. 1 . 1. o
'y = i el v, +2 ‘o, o, (39)
and
N S Ly rip i
kz :§m2 vCZ Vc2 +5 0)02 [2 C()c2. (40)

The total kinetic energy of the i chain is
k="l + k. (41)

Now, substituting (41) into (32) yields an open
chain dynamics of the i* chain as [6]

To=[ilip |8+ .8 [ B ] 4= Tewr @2)

where

m2p2+ilzl+ilzz 0 0
[II¢¢}: 0 Emlr +m2r 0 ,
0 0 0

(43)
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i ext (OAz ) i ext (44)

In (42), [il;¢] and [iP;¢¢] denote the inertia
matrix and the inertia power array referenced to the
Lagrangian coordinate set, respectively. In (43), ‘I,
and 'I,, denote the Z-directional mass moment of

inertia matrix of '/;and 'I,, respectively. Note that

every component of [il;¢:| is a constant value.

Thus, [i PJM] reflecting the change of [iI;¢]

with respect to the joint angles becomes a zero array.

iF,; denotes the vector sum of the external forces

exerted on the Wheel at the contact point between the
wheel of the i chain and the ground. The numbering
of the subsection should take the above form.

3.3. Operational-space dynamics

The operational space dynamic model can be
directly obtained from the dynamics in Lagrange
~ coordinate (i¢) set by using the principle of virtual

work given by

3
T, Su= Z Ty 6,4, (45)

where T, and T; denote the operational force

vector and the effective joint torque vector of the i”
chain, respectively. (45) can be arranged as

3 T
T,=3 6| 1+, (46)
i=1

by employing a kinematic relation [iGZ ] between

the Lagrange coordinate set (ig) and the operational

space coordinate set (u) of the given mobile robot. T,
denotes the operational force vector applied to the
platform of the mobile robot.

Now, by substituting the open chain dynamics,
given by (42), of the three chains into (46), the
operational space dynamic model of the whole mobile
robot can be derived as [6]

T, =| 1, Ji+i [ B, Ja-Fo,, “7)

where the inertia matrix [Izu:I and the inertia power

array |:P;uu] with respect to the operational space

coordinate set (u) can be obtained respectively as

A AR ANT

(-3 {[it] [t ] [ ]

=

Lee] ][y ) ot]] o

+|:plPu*uu}’
where
my 0 0
[plIZu:l: 0 Mpr 0 ’ (50)
0 0 %mp,bz
[ilzu]=[icg]T[iI;¢][iGﬂ’ (51)
and
Fext = i[ng :IT iText' (52)

Each of the first terms in (48) and (49) come from
each open chain dynamics, and the second terms,

[ plI:u] and [ Puuu], denote the inertia matrix

and the inertia power array of the mobile platform,
respectively. In (50), m,; and b represent the mass

and the radius of the mobile platform, respectively.
As shown in (48), the operational-space dynamic

formulation also uses the matrix inversion [,-GZ }

that corresponds to the inverse Jacobian of each chain
given in (15)-(17). Note that these inverse relations
are not singular unless the offset distance or the radius
of the wheel is zero [2]. Thus, the dynamic modeling
approach based on Lagrange’s form of the
D’Alembert principle is singularity-free, which is
beneficial as compared to the orthogonal complement
based algorithm [5]. Also note that the derived
dynamic model of the omni-directional mobile robot
incorporates the wheel dynamics of the mobile robot
into the whole dynamics of the system, which has
been ignored frequently in previous works.

4. IMPULSE MODELING

The operational-space dynamic model including the
wheel dynamics can be employed to derive the
impulse model when a mobile robot collides with an
external environment. Most generally, the impact is
partially elastic in the range of 0 <e<1. When the
coefficient of restitution e is known, the velocity of
colliding bodies can be obtained immediately after the
impact. The component of the increment of relative
velocity along a vector n that is normal to the contact
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surface is given by [12]
(A =&)Y m=—(1+€)(v -, ) n, (53)

where v; and v, are the absolute velocities of the
colliding bodies immediately before impact and An
and Av, are the velocity increments immediately
after impact.

The external impact modeling methodology for the
serial type system is introduced by Walker [13]. When

a robot system interacts with an environment, the
dynamic model of general robot systems is given as

Tu :|:I;uj|ﬁ+ﬁr|:P:uuj|ﬁ_Fext> (54)

where F,,, is the impulsive external force at the
contact point. Integration of the dynamic model given
in (54) over contacting time interval gives

o+At OTAIT % L. 0tAL T * .
N [qu]udwrf i’ | B, |

0 0 0

0+At
- fo F,dt. (55)

Since the position and velocities are assumed finite
all the time during impact, the integral term involving

.T * .
u [Puouu becomes zero as At goes to zero, as

does the term involving actuation input T,. Thus, we
obtain the following simple expression

[I;u](u(HAz)—u(t)):ﬁex,, (56)

~ +At
where F,, = J:O F,. dr is defined as the external
0

impulse at the contact point. Thus, the velocity
increment at the contact point is

At = [1;, ]ﬁl E,. (57)

Assuming that the robot impacts on a fixed solid
surface, substitution of (57) into (53) gives

~ T
([Izu] lﬁ‘ex,j n=—(1+e)i’n, (58)

where it should be noted that the absolute velocity
(v;) with respect to the platform coordinate is given

as u and that the velocity increment of the fixed

surface is always zero (v, =Av, =0). Impulse

always acts at the contact point in the direction of the
surface normal vector (1) under the assumption that
no friction exits on the contacting surface. Thus, we
have

A A

Fext = Fextn' (59)

Substituting (59) into (58), we derive the magnitude
of the external impulse as follows:

n —(1+e)u
Fext = ( *e) _]n . (60)
n" [IW] n
5. SIMULATION

In order to verify the benefit of the dynamic modet
of the mobile robot including wheel dynamics, several
simulations were carried out. The parameters
employed in simulations are given in Tables 1 and 2.

The mobile robot travels along the circular path
with the radius of R, given in Fig. 5(a). It rotates in
the counterclockwise direction. The initial and final
positions are the same, and the initial and final
velocities are given as zero. B denoting the angle
between the global X-axis and the local unit vector i

is given as a fifth-order polynomial with respect to
time such as

ﬂ(f):ao +a1t+a212+a3t3+a4t4+a5t5. (61)
For the given initial conditions, we have

ay=0, @ =0, ay=0, a3 =207/60°,
ay =-307/60%, a5 =127/60°.

Figs. 6(a) and 6(b) denote the path of each joint.
They are obtained by numerical integration of (15)-
(17). Figs. 6(c) and 6(d) are obtained by the inverse
kinematics.

In order to validate the dynamics of the whole
mobile robot dynamics, we included the simulation
result of the kinetic energy of the mobile robot as
shown in Fig. 7. The kinetic energy of the model with

Table 1. Kinematic parameters.

Link i r D
[m] 0.173 0.025 0.025
Link A b H
[m] 0.05 0.1 0.045

Table 2. Dynamic parameters.

Mass Wheel Link
Kg 0.5 0.025

kgm® (i=1,2,3)

Platform
0.025

Inertia tensor

Wheel

diag[0.7813, 15625, 0.7813]x107*

Offset link |diag[8.438, 11.042, 2.604]x107°
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Fig. 5. Trajectory of the mobile robot.

wheel dynamics is larger than that of the model
without wheel dynamics.

As mentioned before, most previous studies on
dynamics of the mobile robot in the literature ignore
the wheel dynamics. However, in some cases, the
effects of wheel dynamics on the whole dynamics of
the mobile robot may not be ignorable, and resultantly,
actuator sizing or control algorithms based on the
incomplete plant model may result in degraded
performance of the system. Thus, we would like to
show the discrepancy between the incomplete
dynamic model and the singularity-free dynamic
model including wheel dynamics that is derived in
this paper. Initially, the characteristic of the inertia

matrix [IZ,J obtained from the operational space

approach will be compared for the two cases, one
including the wheel dynamics and the other not
including the wheel dynamics. Specifically, during the
circular motion of the mobile robot, the mobile robot
keeps the original configuration with respect to the
body-fixed coordinate frame. Thus, the dynamic
model maintains the same value with respect to the
body-fixed coordinate frame.

When the content of the inertia matrix of the
dynamic model ignoring the wheel dynamics given by

Whee Kuk Kim, and Seog-Young Han
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Fig. 6. Motion history of mobile robot.



Singularity-Free Dynamic Modeling Including Wheel Dynamics for an Omni-Directional Mobile Robot with Three... 95

Operational Kinetic Energy
T T

i | — With Wheel Dynamics
i | Without Wheel Dynamics

035 .

0.3 [=mnemees R

(1R L b

Kinetic Energy[Mm)

time[sec)

Fig. 7. Comparison of kinetic energy.

is compared to that of the dynamic model including
the wheel dynamics given by

54329 0.0537 —0.00078
[Izu}z 0.0537  7.5379  0.0107
~0.00078 0.0107  0.0397

at a configuration, it can be observed that there exist
differences between those two models. Particularly, it
can be noted that there exists substantial discrepancy
especially in the y-direction at this specific
configuration.

Another observation can be made by comparison of
the operational forces given in (47) for the two cases.
As shown in Figs. 8 and 9, there are significant
differences at F,, F,, and M, between the two

models. This fact tells us that the incomplete dynamic
model neglecting wheel dynamics may deteriorate the
required control performance of some dynamic
model-based control algorithms.

In order to provide a guideline to the operator or
designer of mobile robots whether the effect of the
wheel dynamics of consideration will be of
significance or not, a more detailed analysis should be
performed. Figs. 10-12 show the operational forces
and moment in X, y, and 6, directions when the

mobile robot follows a circular trajectory with a radius
of 5m for a period of 60sec. It is assumed that the
platform mass is 5kg and the whole mass of three
wheels varies from Okg to 3kg, representing
maximally 60% of the platform mass in simulation.
From these plots it can be observed that the
operational force and moment in y and 6, directions

are affected largely by the wheel dynamics, but the x-
directional operational force is not affected that much.

s i j i i i
0

Time(s)

(a) With wheel dynamics.

Time(s)

(b) Without wheel dynamics.

Fig. 8. X and Y directional inertial forces in the
operational space.
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Fig. 9. Z-directional inertial moment in the operation-
al space.
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Fig. 10. X-directional inertial force in the operational
space at the circular trajectory.

Ol
03

02+

o

Forcey(N)
o
L

40

Time(s) Wheel Mass(Kg)

Fig. 11. Y-directional inertial force in the operational
space at the circular trajectory.
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Fig. 12. Z-directional inertial moment in the opera-
tional space at the circular trajectory.
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Fig. 13. X-directional inertial force in the operational
space at the elliptic trajectory.
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Fig. 14. Y-directional inertial force in the operational
space at the elliptic trajectory.
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Fig. 15. Z-directional inertial moment in the opera-
tional space at the elliptic trajectory.
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Figs. 13-15 show the operational forces and
moments in X, y, and &, directions when the mobile

robot follows an elliptic trajectory with a long radius
of 3m and a short radius of 1m. The platform mass is
assumed to be 20kg and the whole mass of three
wheels varies from Okg to 5kg, representing
maximally 25% of the platform mass. The results
show that as the wheel mass increases, the operational
forces in x, y, and @, directions increase drastically

compared to the circular trajectory. The speed of the
motion also affects the dynamic forces. The elliptic
trajectory with a period of 30sec. yields larger
operational forces and moment, compared to the case
of circular trajectory with a period of 60sec. It can be
summarized from these simulations that the effect of
wheel dynamics could affect the dynamic behavior of
the mobile robot as the inertia of the wheels increases,
implying that the wheel dynamics should not be
carelessly neglected in dynamic analysis of the mobile
robot.

Furthermore, the importance of accurate dynamic
model of the mobile robot can be visualized through
the quantitative analysis of the impact geometry.
When the mobile robot collides with an environment,
the impulse characteristic of the mobile robot can be
studied by analyzing the ellipse geometry. The ellipse
denotes the amount of normalized impulse that may
be experienced by the mobile robot colliding with
some object from the current configuration to any
arbitrary direction with unit velocity. To investigate
impulse characteristics in the operational space of the
mobile robot, the external impulse measure given in
(60) will be employed in simulation. In the following
investigation, it is assumed that the coefficient of
restitution e is 0.8 and the velocity of the origin of
the local coordinate is given as 1m/s. The ellipses of
Figs. 16-19 show the configurations of steering
angles (¢[,¢,,¢;) for each mobile robot and their

corresponding impulse geometries. Note, particularly,
that the configuration given in Fig. 18 shows a
uniform ellipsoid since the wheel dynamics
contributes to the impulse geometry symmetrically,
just like the case of ignoring the wheel dynamics that
always generates a circular shape. However, it is
observed from Figs. 16 and 17 that the amount of
impulse is greater in the moving direction as
compared to those in the other directions, confirming
that the wheel dynamics indeed influences
significantly in the analysis of the impact geometry.

5. CONCLUSIONS

The contribution of this paper can be summarized
as follows. Firstly, an algorithmic singularity-free
dynamic modeling approach is proposed. Secondly, a
complete dynamic model including the wheel

dynamics is suggested as a closed form. The validity
of the proposed method has been shown through
several simulations. Conclusively, it is remarked that
the proposed singularity-free, accurate dynamic model
including wheel dynamics ensures a singularity-free
operation of the mobile system and facilitates the
model-based control and impact analysis for the
mobile robot involving collisions with external
environments.

APPENDIX
A.1 Hessian matrix
It is defined as

P [,
o) L]

describes that it affects the velocity of the operational
space set (1) on the acceleration of the joint variables
and it has M xNx N dimensions. M and N denote
the number of the output and the number of the input
joints, respectively.

The physical Hessian matrix represents the
centripetal and Coriolis acceleration of the link. The
second order KIC matrix (Hessian Matrix) is operated
in a plane by plane fashion corresponding to the ith
output. Position Hessian matrix is symmetric and
rotational Hessian matrix is always null in the plane.
However, rotational Hessian matrix is an upper
triangular matrix in the space.

A.2 Generalized scalar dot product (o )
[A]-[B]=[C], (A1)

where [A] is a (PxQ) matrix, [B] and [C] is a

(QxMxN) array and a (PxMxN) array, respectively. In
a tensor form, (A1) can be expressed as

Car = 2 ayb s (A2)
J

where subscripts of matrix ¢, i, j, and & represent the
corresponding plane, row, and column, respectively.
The operation was first employed in robot dynamic
modeling formulation by Freeman and Tesar [7]. It
plays a primary role for the systematic development of
isomorphic transfer techniques.

A.3 Higher-order loop method

The higher-order constraint equations can be
obtained directly at the velocity level by using a
common intermediate coordinate set.

[1Gﬂ1é=[2Gﬂ2é, (A3)
[1GZ]1£;=[3GZ}3Z%‘ (A4)
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Representing the first-order KIC matrices by
corresponding column vectors, ;g ; which denotes

the jth column at the Jacobian matrix of the ith chain,
(A3) and (A4) can be rewritten as
[ig1 182 1gs]d=la 22 2] L8, (AS)
39

L& 122 18] 8=[3a1 32 38,4 (A6)

Equations (A5) and (A6) can be augmented into a
single matrix equation that can be expressed as

{1& 183 —2& —28 O 0 p
18 183 0 0 =38 —38 77
381 7382 (A7)
1718 28 Y
= ?,
—1&82 0 383
Now, (A7) can be expressed simply as
Jp¢_5p = Jaéa, (A8)

where ¢ and éa denote the dependent and

independent joint velocity, respectively, given by
Qp = [771 P ¢ TR 93} ,

. R . T (A9)
6.=lb 6 ¢].

Direct inversion of the square matrix ./, which is

assumed to be nonsingular, gives

. 1. .
Qp:Jp Jafa:Gan- (A10)
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