• Title/Summary/Keyword: mixtures

Search Result 4,732, Processing Time 0.029 seconds

Frictional Pressure Drop of a Capillary Tube Flow of Pure HFC Refrigerants and Their Mixtures (HFC 순수냉매 및 혼합냉매의 모세관내에서 마찰에 의한 압력강하)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.589-599
    • /
    • 1995
  • The frictional pressure drop of a capillary tube flow is experimentally investigated for pure refrigerants such as R32, R125, and R134a and refrigerant mixtures such as R32/R134a(30/70 by mass percent), R32/R125(60/40), R125/R134a(30/70), and R32/R125/R134a(23/25/52). The binary interaction parameters for the calculation of viscosities of refrigerant mixtures are found based upon the data in the open literature. Several homogeneous flow models predicting the viscosity of two-phase region are compared to select the best model. Cicchitti's equation is known to be the most adequate for the prediction of the viscosity for refrigerant mixtures, which is used in the analysis of adiabatic capillary flows. A model for the prediction of the frictional pressure drop of single and two-phase flow is developed for refrigerant mixtures in this study. This model may be used to design and analyze the performance of a capillary tube in the refrigerating system.

  • PDF

Study on the Electron Transport Coefficient in Mixtures of $CF_4$ and Ar ($CF_4-Ar$ 혼합기체의 전자수송계수에 관한 연구)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2007
  • Study on the electron transport coefficient in mixtures of CF4 and Ar, have been analyzed over a range of the reduced electric field strength between 0.1 and 350[Td] by the two-term approximation of the Boltzmann equation (BEq.) method and the Monte Carlo simulation (MCS). The calculations of electron swarm parameters require the knowledge of several collision cross-sections of electron beam. Thus, published momentum transfer, ionization, vibration, attachment, electronic excitation, and dissociation cross-sections of electrons for $CF_4$ and Ar, were used. The differences of the transport coefficients of electrons in $CF_4$ mixtures of Ar, have been explained by the deduced energy distribution functions for electrons and the complete collision cross-sections for electrons. The results of the Boltzmann equation and the Monte Carlo simulation have been compared with the data presented by several workers. The deduced transport coefficients for electrons agree reasonably well with the experimental and simulation data obtained by Nakamura and Hayashi. The energy distribution function of electrons in $CF_4-Ar$ mixtures shows the Maxwellian distribution for energy. That is, $f({\varepsilon})$ has the symmetrical shape whose axis of symmetry is a most probably energy. The proposed theoretical simulation techniques in this work will be useful to predict the fundamental process of charged particles and the breakdown properties of gas mixtures. A two-term approximation of the Boltzmann equation analysis and Monte Carlo simulation have been used to study electron transport coefficients.

Breakdown Characteristics of $SF_6/CF_4$ Mixtures Under AC and Standard Lightning Impulse Voltages in Uniform Field (평등전계에서 AC 및 표준 뇌 임펄스 전압의 $SF_6/CF_4$ 혼합 가스 절연 파괴 특성)

  • Sung, Heo-Gyung;Park, Shin-Woo;Hwang, Chung-Ho;Kim, Nam-Ryul;Huh, Chang-Su
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.227-228
    • /
    • 2007
  • Although many studies have been carried out about binary gas mixtures with $SF_6$, few studies were presented about breakdown characteristics of $SF_6/CF_4$ mixtures. At present study the breakdown characteristics of SFJCF4 mixtures in uniform field was performed. The experiments were carried out under AC and standard lightning impulse (SLI) voltages. The sphere-sphere electrode whose gap distance was 1 mm was used in a test chamber. $SF_6/CF_4$ mixtures contained from 0 to 100% $SF_6$ and the experimental gas pressure ranged from 0.1 to 0.4 MPa. The results show that addition of $SF_6$ to $CF_4$ increase AC and SLI breakdown voltages. Under AC voltages the breakdown voltages of each mixture were linearly increased according to the quantity of $SF_6$. However under SLI voltages the breakdown voltages of each mixture were similar.

  • PDF

A Study on the Improvement of the Electron Transport Properties in $SF_{6+}Ar$ Mixtures Gas ($SF_{6+}Ar$혼합기체의 전자수송특성 개선에 관한 연구)

  • 하성철;김상남;유회영;서상현;임상원;전병훈
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.1
    • /
    • pp.67-73
    • /
    • 1998
  • In this paper, the electron swarm parameters in the 0.5% and 0.2% SF\ulcorner+Ar mixtures are measured by time of flight method over the E/N(Td) range from 30 to 300(Td). The measurements have been carried out by the double shutter drift tube with variable drift distance from the cathod. A two-term approximation of the boltzmann equation analysis and Monte Carlo simulation have been also used to study electron transport coefficients. We have calculated W, $ND_L,\;ND_T,\;\alpha,\;\eta,\;\alpha-\eta$, and the limiting breakdown electric field to gas mixtures ratio in pure $SF_6$+Ar mixtures. The electron energy distribution function has been analysed in $SF_6$+Ar mixtures at E/N : 200(Td) for a case of the equilibrium region in the mean electron energy. The measured results and the calculated results have been compared each other.

  • PDF

Correlation between the Properties of Superpave Binder and Engineering Properties of Recycled Aged CRM Mixtures (재생 CRM 바인더와 혼합물의 성능 상관성 연구)

  • Kim, Hyun Hwan;Jeong, Kyu Dong;Lee, Moon Sup;Lee, Soon Jae
    • International Journal of Highway Engineering
    • /
    • v.18 no.2
    • /
    • pp.1-9
    • /
    • 2016
  • PURPOSES : The performance properties (indirect tensile strength, rutting resistance, and resilient modulus) of recycled aged CRM mixtures and their correlation with Superpave binder properties (viscosity, high failure temperature, $G^*sin{\delta}$, and stiffness) were investigated. METHODS: A series of Superpave binder tests was performed by using a rotational viscometer, DSR, and BBR to evaluate the performance properties. In addition, the CRM mixes were artificially aged through accelerated aging processes, and their properties were evaluated. The correlation between the properties of recycled aged CRM binders and the engineering properties of recycled aged CRM mixtures was experimentally determined. RESULTS : The rut depth values decreased and the ITS values increased with increasing high failure temperature. In general, the resilient modulus properties seemed to be poorly correlated with the high-temperature values, regardless of the aggregate source. CONCLUSIONS: The recycled aged CRM binders and mixtures can lead to satisfactory performance, and the properties of these binders are strongly correlated with the engineering properties of the mixtures.

Comparative Study on the EC50 Value in Single and Mixtures of Dimethylformamide, Methyl Ethyl Ketone, and Toluene

  • Kim, Ki-Woong;Won, Yong Lim;Park, Dong Jin;Kim, Doh-Hee;Song, Kwan Young
    • Toxicological Research
    • /
    • v.30 no.3
    • /
    • pp.199-204
    • /
    • 2014
  • The aim of this research was to improve our understanding of human toxicity due to exposure to DMF, MEK, or TOL individually as compared to exposure to DMF-MEK or DMF-TOL mixtures, by comparing $EC_{50}$ values as well as the morphological changes in HepG2 cells treated with these substances. We found that there was marked cell necrosis in the groups treated with mixtures than in those treated with the compounds alone, and that the amount of cell death and the $EC_{50}$ value were more dependent on MEK and TOL than on DMF. Moreover, analysis of the changes in effective concentration curves revealed that MEK had an antagonistic effect on the human toxicity of DMF, whereas TOL had a synergistic effect. Accordingly, these results suggest that in workplaces involved in the manufacture of synthetic leather, mixtures of DMF and TOL should be avoided as much as possible in order to minimize environmental toxicity and protect the health of the workers.

Anti-Obesity Effects of Mixture of Atractylodes macrocephala and Amomum villosum Extracts (사인과 백출 추출 혼합물의 항비만 효과)

  • Kim, Ha Rim;Choi, Bong Keun;Jung, Hyun Jong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.33 no.5
    • /
    • pp.282-287
    • /
    • 2019
  • In this study, we investigated the anti-obesity effects of various mixtures of Atractylodes macrocephala (AM) and Amomum villosum (AV) water extracts on high-fat diet (HFD) induced mouse model. We classified five groups as follows; control, HFD, HFD + AM extracts : AV extracts (100mg/kg) (1:1), HFD + AM extracts : AV extracts (100mg/kg) (2:1), HFD + AM extracts : AV extracts (100mg/kg) (3:1). Oral administration of various mixtures of AM and AV extracts for 6 weeks inhibited HFD-induced increases of body, liver and epididymal fat weights. Also, lipid profiles including LDL cholesterol were improved by various mixtures of AM and AV extracts treatment compared with HFD-fed group. Lipogenesis-related genes such as acetyl coA carboxylase (ACC) and fatty acid synthase (FAS) in liver changed in a favorable way for lipid biosynthesis by HFD compared to control, but various mixtures of AM and AV extracts-treated groups did not. Our results show that various mixtures of AM and AV extracts can prevent HFD-induced obesity in mice and suggests that the mechanisms are involved in expressions and modifications of lipogenesis-related genes such as ACC and FAS in liver.

Feasibility of a methane reduced chemical kinetics mechanism in laminar flame velocity of hydrogen enriched methane flames simulations

  • Ennetta, Ridha;Yahya, Ali;Said, Rachid
    • Advances in Energy Research
    • /
    • v.4 no.3
    • /
    • pp.213-221
    • /
    • 2016
  • The main purpose of this work is to test the validation of use of a four step reaction mechanism to simulate the laminar speed of hydrogen enriched methane flame. The laminar velocities of hydrogen-methane-air mixtures are very important in designing and predicting the progress of combustion and performance of combustion systems where hydrogen is used as fuel. In this work, laminar flame velocities of different composition of hydrogen-methane-air mixtures (from 0% to 40% hydrogen) have been calculated for variable equivalence ratios (from 0.5 to 1.5) using the flame propagation module (FSC) of the chemical kinetics software Chemkin 4.02. Our results were tested against an extended database of laminar flame speed measurements from the literature and good agreements were obtained especially for fuel lean and stoichiometric mixtures for the whole range of hydrogen blends. However, in the case of fuel rich mixtures, a slight overprediction (about 10%) is observed. Note that this overprediction decreases significantly with increasing hydrogen content. This research demonstrates that reduced chemical kinetics mechanisms can well reproduce the laminar burning velocity of methane-hydrogen-air mixtures at lean and stoichiometric mixture flame for hydrogen content in the fuel up to 40%. The use of such reduced mechanisms in complex combustion device can reduce the available computational resources and cost because the number of species is reduced.

Detonation cell size model based on deep neural network for hydrogen, methane and propane mixtures with air and oxygen

  • Malik, Konrad;Zbikowski, Mateusz;Teodorczyk, Andrzej
    • Nuclear Engineering and Technology
    • /
    • v.51 no.2
    • /
    • pp.424-431
    • /
    • 2019
  • The aim of the present study was to develop model for detonation cell sizes prediction based on a deep artificial neural network of hydrogen, methane and propane mixtures with air and oxygen. The discussion about the currently available algorithms compared existing solutions and resulted in a conclusion that there is a need for a new model, free from uncertainty of the effective activation energy and the reaction length definitions. The model offers a better and more feasible alternative to the existing ones. Resulting predictions were validated against experimental data obtained during the investigation of detonation parameters, as well as with data collected from the literature. Additionally, separate models for individual mixtures were created and compared with the main model. The comparison showed no drawbacks caused by fitting one model to many mixtures. Moreover, it was demonstrated that the model may be easily extended by including more independent variables. As an example, dependency on pressure was examined. The preparation of experimental data for deep neural network training was described in detail to allow reproducing the results obtained and extending the model to different mixtures and initial conditions. The source code of ready to use models is also provided.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.