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a b s t r a c t

The aim of the present study was to develop model for detonation cell sizes prediction based on a deep
artificial neural network of hydrogen, methane and propane mixtures with air and oxygen. The dis-
cussion about the currently available algorithms compared existing solutions and resulted in a conclu-
sion that there is a need for a new model, free from uncertainty of the effective activation energy and the
reaction length definitions. The model offers a better and more feasible alternative to the existing ones.
Resulting predictions were validated against experimental data obtained during the investigation of
detonation parameters, as well as with data collected from the literature. Additionally, separate models
for individual mixtures were created and compared with the main model. The comparison showed no
drawbacks caused by fitting one model to many mixtures. Moreover, it was demonstrated that the model
may be easily extended by including more independent variables. As an example, dependency on
pressure was examined. The preparation of experimental data for deep neural network training was
described in detail to allow reproducing the results obtained and extending the model to different
mixtures and initial conditions. The source code of ready to use models is also provided.
© 2018 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and motivation

One of the dangers connected with nuclear power plants is
hydrogen detonation that threatens the integrity of the contain-
ment building. A loss-of-coolant accident can cause hydrogen
generation in a reaction between steam and the fuel-cladding in-
side the reactor pressure vessel [1]. The concentration of hydrogen
can then reach the detonation limits and pose a large threat.

Numerical investigations of combustion are very important in
risk assessment and loss prevention. Simulations and computer
modeling allow us to consider many scenarios under different
conditions with much lower costs and less time. CFD models for
large scale geometries were developed and proven to give results in
good agreement with experimental data. Venetsanos et al. [2]
proposed source, dispersion and combustion modeling tech-
niques regarding hydrogen explosions and validated their results
against a real explosion which occurred in 1983 in Stockholm,
Sweden. Molkov et al. [3] developed a model of vented gaseous
deflagrations with inertial vent covers which are a very frequent

scenario in process safety and risk assessment. Another validation
of a CFD model of gas dispersion and explosion was performed by
Middha et al. [4], who ran blind simulations and carried out ex-
periments to check the accuracy of the model. The results obtained
in his investigation showed that the model could accurately predict
pressure profiles. Large scale CFD modeling of detonation was
performed by _Zbikowski et al. [5] In his work, a 3D detonation LES-
based model was developed and verified against experimental
data, showing good agreement and proving that large scale 3D
simulations can be used in risk assessment regarding detonation. It
implies that modeling and numerical computations in general are a
very useful and needed tool in investigating detonation.

Detonation is one of themost dangerous types of combustion. In
this phenomenon, a supersonic wave compresses and heats up
flammable gas causing autoignition. Intense combustion, which
continuously supports the shock [6], occurs because the chemical
reaction rate is exponentially dependent on temperature [7]. The
autoignited mixture then forms a reaction front, which follows
immediately after the shock wave. Typical detonation parameters
involve very high pressure and velocity of the order of 20 bar and
2000 m/s, respectively. Actual values depend on mixture compo-
sition and initial conditions.

The detonation wave is an unstable and three dimensional
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structure, whereMach stems, transversewaves and incident shocks
collide with each other, forming triple points and creating deto-
nation cells. The size of these cells depends on fuel and oxidizer
properties, as well as onmixture concentration. The detonation cell
size l is the most often used criterion in assessing the ease with
which a mixture can be detonated, called detonation sensitivity or
detonability. A number of empirical formulas have been developed
in order to correlate the detonation cell size with the possibility of
the initiation of detonation in a given geometry [8,9].

Taking the above into consideration, many studies have
attempted to develop empirical models based on experimental
measurements, capable of calculating detonation cell sizes with
satisfactory accuracy. Shchelkin and Troshin [10] were the first to
propose that the detonation cell sizes can be correlated with the
reaction zone length calculated using the Zeldovich-von Neuman-
D€oring (ZND) model [11]. Shepherd [6] considered it in a greater
detail, discussing multiple definitions of reaction length. His work
also included calculations based on these assumptions for various
fuels. It can be concluded that the choice of the constant A, which
relates the reaction length with the detonation cell size, is crucial
and challenging. This coefficient varies with different fuels, oxi-
dizers and concentrations, which makes it useful only for a narrow
fragment of specific conditions. Gavrikov et al. [12] introduced a
generalization of this model. It was proposed that the constant A
could be made a function of two stability parameters: dimension-
less effective activation energy and a parameter describing the
relation between chemical energy and initial thermal energy of the
combustible mixture. This approach resulted in amodel which gave
satisfactory results for awide range of mixtures and concentrations.
However, the question of the right reaction length definition is still
open. Moreover, his model introduced new uncertainty: selection
of detonation velocities which are needed to calculate effective
activation energy. Although Gavrikov et al. chose values which gave
the best correlation between experimental cell widths and reaction
lengths, the problem of selecting these velocities still persists. For
example Yu et al. [13] chose in their work different values than
Gavrikov. All models mentioned so far are likewise dependent on
the detailed chemical reaction mechanism selection and its error,
which is seldom taken into consideration during such analyses but
can be significant. Comparison of different chemical mechanisms,
their relationships with initial conditions, equivalence ratio etc. is
presented for example in the work of Olm et al. [14] and in recent
publications of Jach et al. [15] and Rudy et al. [16]. It is apparent that
all models which are dependent on chemical mechanisms intro-
duce errors that stem directly from the use of this method. In
addition, the method proposed by Gavrikov requires the multipli-
cation of the reaction length and the coefficient dependent on the
effective activation energy in order to obtain detonation cell sizes.
This not only introduces two kinds of errors for each factor (un-
certainty of reaction length/detonation velocity selection and the
error from chemical mechanism), but also these errors are then
multiplied. Another disadvantage of models that require calcula-
tion of the effective activation energy or the reaction length is that
these calculations are often time consuming. It concerns the
computation time, which can be significant, especially for detailed
mechanisms with many reactions as well as developing scripts for
calculation of these parameters. There are no standard approaches
to these problems, so minor differences in implementations can
result in a different values for these properties. Consequently, it
produces different values of detonation cell sizes, which leads to
non-repeatable studies. In their recent work, Yu et al. [13] proposed
a model based on Support Vector Machines, which showed better
performance in comparison with their experimental data than
model made by Gavrikov et al. Unfortunately, their model still re-
quires calculation of the effective activation energy. There is a need

to develop a more robust model.
Recent progress in machine learning showed many applications

in a wide variety of areas, where the results obtained by neural
networks are more accurate and revolutionary. These solutions also
found their use in engineering, where they either make modeling
easier and faster or allow tomodel what previously was considered
impossible. As an example, a special type of neural networks called
Convolutional Networks [17] was used in CFD code based on the
Euler equations developed by Tompson et al. [18]. Those networks
were first trained using data from standard 3D simulations, and
then used to predict the pressure field in the resulting CFD model.
This method made the simulations orders of magnitude faster, the
results obtained were in good agreement with original data and the
model performed well in other cases as well. The next example of
CFD code enhanced with machine learning is a work by Shang et al.
[19], who found that such combination can be used in two-phase
flows of water and vapor. They trained two artificial neural net-
works during the process of solving boundary and conservation
equations and, as a result, could predict enthalpy and pressure in
any position inside the domain with good accuracy. Another
example is a study by Elkamel et al. [20], where an artificial neural
network model was developed in order to simulate the process of
hydrocracking unit in an oil refinery. Their model could successfully
predict properties and yields of products of such processes (e.g. iC,
nC, Diesel, light and heavy naphtha etc.) which are crucial in pro-
cess optimization, catalyst selection, planning and control, with the
maximum average percent error of 8.71%. Another industrial
application of neural networks was described by Ibargüengoytia
et al. [21]. In their work, a virtual sensor was developed to measure
and report the current value of viscosity in a fossil fuel power plant.
A virtual sensor is in fact a computer program which takes inputs
from real sensors and outputs a value of interest. It is especially
useful for properties which are hard or impossible to physically
measure in real time. They used historical laboratory data to train
their Bayesian network and obtained a very good estimator, which
was later installed in the Tuxpan Power Plant in Veracruz, Mexico. A
successful application of a genetic algorithm (GA) in the combus-
tion modeling was presented by Elliott et al. [22]. In their research,
GA was used in optimization of new kinetic reaction mechanisms,
whereas measured ignition delay times served as a basis for the
optimization process. The result of their work was an algorithm
that could output reaction rate coefficients for the combustion
process in order to make the chemical mechanism most accurate
for calculating ignition delay times and species concentration.

The main objective of this study was to propose a new deto-
nation cell size model, based on a deep neural network, for
hydrogen, methane and propane mixtures with air and oxygen. It
allows for more accurate and much faster calculations than stan-
dard approaches based on detailed chemical mechanisms and
could also be extended to any other mixture and conditions, which
we prove in this work.

2. Experimental data sources

Experimental data for hydrogen-air, methane-oxygen and
propane-oxygen was obtained during experiments conducted in a
9 m long detonation tube with 0.17 m of inner diameter [23]. The
combustionwas initiated with the use of a spark plug located at the
beginning of a 0.6 m long turbulence generator (made of multiple
layers of metal mesh), where the transition to detonation took
place (approximately 0.5m from the ignition point for all mixtures).
The purpose of the experiments was to acquire pressure profiles,
detonation velocity and the distribution of the characteristic cell
sizes for specific mixture composition. In order to measure the
characteristic cell sizes, a metal sheet coveredwith sootwas used. It
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was placed at the end of the tube, and the cells weremeasured with
a caliper. All mixtures were prepared using the partial pressures
method the day before the experiment. Experiments were con-
ducted under pressure of 1 bar and the temperature approximately
25�C.

Detonation cell sizes for propane-air and methane-air mixtures
were obtained from literature. Knystautas et al. [24] measured
detonation cell size and predicted critical tube diameters, critical
initiation energy and detonability limits of hydrocarbon-air mix-
tures, and their results of propane-air mixture measurements were
used in this work. The cell sizes of methane-air detonation were
taken from the work of Zipf et al. [25], who performed extensive
experiments of at NIOSH Lake Lynn Laboratory and determined
detonation velocity, pressure, cell sizes and detonability limits of
that mixture.

Additional data for the extended model, where the dependency
on initial pressure was introduced, was gathered from literature.
Measurements of detonation cell sizes for methane-oxygen mix-
tures at pressure lower than atmospheric were obtained from the
work by Wang et al. [26]. For hydrogen-air mixture, data found in
the article by Stamps and Tieszen [27] was used.

3. Preparation of data and feature engineering

Everymachine learningmodel performance is highly dependent
on the number of examples and quality of the data on which it is
trained. A small number of training examples results in a model
which cannot generalize well when it encounters new data tomake
predictions. An artificial neural network is an extremely flexible
algorithm. As proven in the Universal Approximation Theorem [28],
it is capable of approximating continuous functions on the
Euclidean space. Being very powerful, such algorithm requires even
more data than simpler machine learning models like, for example,
logistic regression, Support Vector Machines (SVM) or Random
Forest. Taking these properties of neural networks into consider-
ation, special emphasis was put on the preparation of data in this
work. The steps taken in order to obtain a satisfactory dataset to
train the model are listed and described below:

� approximation of experimental data
� approximation of the standard deviation of experimental data
� data simulation
� generating more features using Cantera [29].
� merging data from all mixtures into one dataset
� choosing significant features for detonation cell prediction

During experimental investigations of detonation cell sizes, the
number of collected measurements is usually lower than 100. This
number of observations is definitely too small to be used as training
data for a neural network. Data simulation needed to be performed
in order to increase the number of samples. The first step in our
approach was to approximate the experimental data. This
approximation involved determining a polynomial of the order
equal to the number of experimental points - 1 for a given mixture.
Then, this polynomial approximation was also performed for the
standard deviation (SD). For propane-air and methane-air data
obtained from literature, we assumed that the SD can be estimated
as in thewidely used formula (1), known as the range rule of thumb
[30].

SDz
max�min

4
(1)

As a result, the polynomial approximations obtained could be
used to perform data simulation. The simulation step assumed that,

for every given concentration, cell sizes followed the Normal Dis-
tribution, whose probability density function (PDF) is described
with formula (2):
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where m (mean) and s (standard deviation) were calculated using
the polynomial approximation of detonation cell sizes and their
standard deviations, accordingly. A total of 1000 points per mixture
was generated using this approach, with random sampling from an
individual PDF for every distinct value of fuel concentration. An
exemplary illustration of the generated data is shown in Fig. 1.

One of the means to improve predictive power of a machine
learning algorithm is feature engineering. It is a term which encap-
sulates all actions of refining, transforming, adding and removing the
independent variables in order to make them more useful for the
algorithm. In the present study, Cantera and SDToolbox [31] software
was used to generate more input features for a given mixture and
fuel concentration. These inputs provided more information for the
model, particularly information related to mixture properties
depending on the fuel - oxidizer ratio. Generated inputs were as
follows: adiabatic flame temperature, Chapman-Jouguet (CJ) veloc-
ity, CJ temperature and CJ pressure, all as a function of the fuel
concentration. Despite the fact that these values are also affected by
the error related to the chemical mechanisms calculations, they are
not influenced by any uncertainty related to the assumptions (eg.
velocities in Ea=RT or reaction length definition). Also, these are
basic, theoretical mixture properties where error does not accumu-
late during further multiplication and other operations. The next
step was to merge data for all mixtures into one dataset. In order to
differentiate between mixtures, new input variables were intro-
duced: h2air, ch4air, ch4o2, c3h8air and c3h8o2, with a one-hot
encoding (1 for chosen mixture, 0 for any other). The last step was
to choose the best features as the final inputs to the model. The
numerical and visual analysis of correlations between inputs and
outputs showed that adiabatic flame temperature gave the most
substantial contributions to the accuracy of the predictions. This was
due to the fact that all other variables were closely, and nearly lin-
early, correlated to the fuel concentration so that they would not add
any significant information to the inputs. Also, attempts were made
to include effective activation energy in order to assess its influence
on the end results, but including this term did not noticeably
improve model performance on the test set. In the end, only the
adiabatic flame temperaturewas kept as an additional input variable.
The rightness of this choice was further confirmed during model
evaluation.

Fig. 1. Simulated 1000 cell sizes for H2 � air, as a function of fuel concentration.
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4. Model construction, tuning and training

The basic assumptions for the model were as follows:

� initial conditions: 1 atm, 300 K
� the number of inputs equal to 7 (adiabatic flame temperature
[K], volumetric fraction of fuel and 5 kinds of mixtures:
propane-air, propane-oxygen, methane-air, methane-oxygen
and hydrogen-air

� one output - log10ðdetonation cell size ½mm�Þ
� activation functions for all hidden layers: hyperbolic tangent
� identity function for the output layer

As detonation cell sizes for the examinedmixtures varied from 1
to 1000 mm, as presented in Table 1, it was decided that the output
of the model would be log10 in order to enable the model to
converge faster and obtain better results. The detailed structure of
the model (the number of hidden layers, the number of nodes in
each layer and the L2 regularization parameter [32]) was deter-
mined using a hyperparameter grid search [33]. The constraints
imposed on these parameters were:

� the number of hidden layers between 1 and 4
� the number of nodes (equal in every hidden layer) between 3
and 14

� the regularization parameter: 1e-3, 1e-4, 1e-5, 1e-6, 1e-7 or 0

FCNN4R package [34] was used for model development and
calculations. Every combination of the above hyperparameters was
evaluated on the training set with the use of a 5-fold cross vali-
dation [35], which is a widely known technique of measuring the
performance of algorithms on different subsets of training data in
order to avoid overfitting. Overfitting is observed when models
perform very well on the data used to train but fail to generalize
well on the data they have not seen before. The whole dataset of
5000 examples was divided into train and test sets in a proportion
of 80/20. The data was shuffled randomly before the split and
divided in such a way that the test set contained the same number
of samples from each mixture. The chosen optimization algorithm
was Rprop [36], which was used to minimize the mean squared
error (MSE) between predicted and true cell sizes. Prior to model
tuning and training, the data was scaled to a range [-1,1] in order to
decrease calculation time of the training. After tuning, the optimal
hyperparameters were as follows: 2 hidden layers, 7 nodes in each
of them and 1e-6 L2 regularization coefficient. Further manual
tuning allowed for reducing the number of neurons for the second
hidden layer to 3 nodes, without a noticeable loss of accuracy. The
schema of the final model is presented in Fig. 2. The structure of the
model can be interpreted as follows: the first hidden layer handles
the same number of features as the input layer (7->7), the second
hidden layer compresses all mixture type features into one while
retaining the rest (7->3). This is our proposed methodology for
extending this model as we show in section 6.

In addition to themainmodel, which takes all fuels into account,
models for specific mixtures were developed in order to compare

their effectiveness and accuracy. Every one of the individual models
underwent the same process of hyperparameters tuning as the
main model.

5. Model validation

After tuning and choosing the optimal hyperparameters, all
models were evaluated on the same test dataset, which contained
the same number of observations for each mixture. Statistics pre-
senting models performance are shown in Table 2. R-squared (R2)
metric indicates how well the model fits the data. It can be seen
that the main model and individual models were capable of pro-
ducing good representation of detonation cell sizes. R2 for 3 mix-
tures: methane-air, propane-air and propane-oxygen amounts to
above 95%, which indicates a very good fit to the data. For methane-
oxygen it is around 88% for both models. Hydrogen-air mixture
achieved a lower value for the metric: 79%, which was caused by a
large standard deviation of measurements for this mixture (as seen
in Fig. 1). As a result, the hydrogen-air mixture produced the largest
mean absolute percentage error (MAPE): 14.3%. For all other mix-
tures, this error is below 9%. Comparing individual models metrics
with the performance of the main one, it can be seen that the
construction of a universal model for all mixtures did not introduce
additional errors. For all mixtures, performance of bothmodels was
approximately the same, with minor differences in mean absolute
error (MAE) and R-squared.

Comparisons of all models performance, including calculations
based on Gavrikov's model, are presented in Figs. 3e7 and in
Table 3. Experimental measurements were shown with their cor-
responding standard deviations. The analysis of these figures
confirmed that the main model and models for specific mixtures
have the same performance. It can likewise be seen that their
predictions agree with the experimental data. In most cases,
calculated detonation cell sizes fell within bounds of the experi-
mental standard deviations. These errors were larger only for
propane-air and methane-air on Figs. 3 and 5, respectively. The
comparison of the experimental values with the Gavrikov's model
showed that its performance was noticeably worse. For methane-
air (Fig. 5) and hydrogen-air (Fig. 7) mixtures, detonation cell

Table 1
Ranges of detonation cell sizes and standard deviations of analyzed mixtures.

Mixture Min. cell size [mm] Max. cell size [mm] Min. SD [mm] Max. SD [mm]

H2 - air 9 26.4 1.5 4.7
CH4 - air 209.2 999.3 9.5 67.3
CH4eO2 2.9 8.3 0.3 0.9
C3H8 - air 52.9 440.7 2.6 22
C3H8eO2 1.1 3.5 0.1 0.3

Fig. 2. Final model schema.
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sizes calculated using the Gavrikov's method followed the overall
trend, and could be considered acceptable. As can be seen in Fig. 6,
the cell size for the rich methane-oxygen mixture was approxi-
mately 2 times smaller than the experimental value. For the
remaining propane-air (Fig. 3) and propane-oxygen (Fig. 4) mix-
tures, the relative error of Gavrikov's model in comparisonwith the
experiments was larger than 50%.

More detailed, statistical comparison of all models as well as the
mean standard deviations from experiments are presented in
Table 3. It confirms the conducted analysis and presents quantita-
tive results. It can be noticed that the MAPE of Gavrikov's models is
3e14 times larger, and for propane-oxygen it is even 50 times larger
than the MAPE of the models developed in this study. The largest
MAPE generated by the neural net model was for methane-air and

propane-air, 13.9% and 12.3%, respectively. This is due to more
irregular detonation cell sizes distribution along fuel concentration
for these mixtures.

6. Model extension

In order to check the extensibility of the model, pressure de-
pendency was chosen as an additional feature. A small amount of
the available data in the literature described at the end of section 2
allowed for considering only two mixtures in this case: methane-
oxygen and hydrogen-air. When choosing the model structure,
the number of hidden layers and nodes was determined without
the use of model tuning, but following the methodology pointed
out in section 4. Based on that methodology, it was concluded that

Table 2
Models performance metrics on the test dataset.

Mean absolute error [mm]

H2 - air CH4 - air CH4eO2 C3H8 - air C3H8eO2

Main model 1.68 25.53 0.41 5.31 0.099
Individual model 1.57 26.34 0.36 5.33 0.1
Mean absolute percentage error [%]
Main model 14.3 5 9.8 4 8.2
Individual model 14.3 5 9.7 4 8.1
R-squared
Main model 0.79 0.97 0.88 0.99 0.96
Individual model 0.78 0.96 0.89 0.99 0.95

Fig. 3. Detonation cell sizes comparison for C3H8-air mixture, Gavrikov's model from
Ref. [24].

Fig. 4. Detonation cell sizes comparison for C3H8eO2 mixture, Gavrikov's model from
Ref. [13].

Fig. 5. Detonation cell sizes comparison for CH4-air mixture, Gavrikov's model from
Ref. [25].

Fig. 6. Detonation cell sizes comparison for CH4eO2 mixture, Gavrikov's model
calculated. Mechanism used: GRI-MECH 3.0 [37].

K. Malik et al. / Nuclear Engineering and Technology 51 (2019) 424e431428



the number of hidden nodes in the first hidden layer should be 5
(the same as the number of inputs) and in the second hidden layer
it should be 4 (mixture inputs compressed into one node). The final
structure is shown in Fig. 8.

As can be seen in Table 4, the extended model showed good,
consistent performance on test data. “Atmospheric pressure” row
represents the case in which the model was validated against the
data involving atmospheric pressure and varying fuel concentra-
tion. The experimental data in this casewas the same as in themain
model. We can see that MAE, MAPE and R2 for hydrogen-air
differed by respectively 0.16, 0.3 and 0.01. These differences are
not significant and result from random train/test data split and
from the discrepancies in themodel structure. For methane-oxygen
mixture, MAE andMAPE differ by 0.01 and 0.1 while R2 is higher by
0.01. These results show that including additional dependent var-
iable in our model did not cause any diminishing of the previous
performance. The same conclusions can be drawn from results in
Table 5 and in Figs. 9 and 10, which show model performance in
comparison with experiments. There are no significant differences
between the extended and the main model based on those metrics.
The “varying pressure” case concerned the dependency on pres-
sure, while keeping the fuel concentration constant. The values in
tables for this case were averaged for all examined concentrations.
In Table 4 it can be seen thatMAEs were larger than for the constant
pressure case, but it was caused by much larger cells for lower
pressures (up to 10 times). Moreover, detonation cell sizes for
hydrogen-air for 17.4% concentration were about 10 times larger
than for 30% as may be seen in Fig. 9. Taking these two points into
consideration, MAPE is considered to be a more representative
metric in this case as the values obtained were approximately half
the values of the atmospheric pressure case. For hydrogen-air

MAPE, was 8.3% and for methane-oxygen it was 5.2%. Once again,
from Table 5 it can be concluded that the developed model is ac-
curate. All values of MAE are lower that their corresponding stan-
dard deviations from the experimental measurements with only
one exception of methane-oxygen mixture for the varying pressure
validation. The MAE in this case was 1.63 mm, while the SD was
1.13 mm.

Fig. 7. Detonation cell sizes comparison for H2-air mixture, Gavrikov's model from
Ref. [12].

Table 3
Models performance metrics on experimental data.

Mean absolute error [mm]

H2 - air CH4 - air CH4 - O2 C3H8 - air C3H8 - O2

Main model 0.85 55.87 0.06 19.73 0.028
Individual model 0.98 56.14 0.14 19.51 0.022
Gavrikov 8.65 214.68 0.93 92.41 1.86
Mean absolute percentage error [%]
Main model 8 13.9 1.4 12.3 1.8
Individual model 8.4 13.7 2 12.4 0.8
Gavrikov 45.8 31.4 19.2 51.5 87.8
Mean standard deviations of experimental measurements [mm]

2.88 31.12 0.5 8.85 0.18

Fig. 8. Extended model schema.

Table 4
Extended (pressure) model performance metrics on the test dataset.

Mean absolute error [mm]

H2 - air CH4 - O2

Atmospheric pressure 1.84 0.42
Varying pressure 6.65 0.96
Mean absolute percentage error [%]
Atmospheric pressure 14.6 9.9
Varying pressure 8.3 5.2
R-squared
Atmospheric pressure 0.78 0.89
Varying pressure 0.91 0.99

Table 5
Extended (pressure) model performance metrics on experimental data.

Mean absolute error [mm]

H2 - air CH4eO2

Atmospheric pressure 1.11 0.44
Varying pressure 3.06 1.63
Mean absolute percentage error [%]
Atmospheric pressure 7.9 6.9
Varying pressure 5.9 5.7
Mean standard deviations of experimental measurements [mm]
Atmospheric pressure 2.88 0.5
Varying pressure 9.1 1.13
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7. Conclusions

In this work, a new detonation cell size model for hydrogen,
methane and propane mixtures was developed and validated. The
model is based on an deep neural network and requires fuel frac-
tion, adiabatic flame temperature [K] and mixture type (i.e. an
indicationwhether it is hydrogen-air, propane-oxygen etc.) as input
parameters for initial conditions 1 atm and 300 K. Moreover, an
extension of this model was also developed in order to check its
flexibility and availability to include pressure as an additional
dependent variable. The results proved that presentedmodels were
capable to predict detonation cell sizes for all mixtures concerned
with the smallest error. In addition to better accuracy, the advan-
tages of this approach are that the models are efficient and do not
require any calculation of the effective activation energy or the
reaction length. It implies that these models are not influenced by
errors and uncertainties of different definitions of these properties,
and are also free from errors introduced by chemical mechanisms.
The only property that needs to be calculated is the adiabatic flame
temperature. These models can also be easily updated when new
experimental results are available, or extended to more mixtures/
different initial conditions as was proved in this work. The only
requirement is a large amount of experimental measurements.
Then, following themethodology described in detail in this study, it
is possible to properly preprocess these measurements and
perform training of a new model or update the weights of the
existing one.
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Appendix

The two models developed in this study (the main model and
the extendedmodel) are available on github as C source code under
the following address: https://github.com/konradmalik/ann-
detonation-cell-sizes.git.
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