• Title/Summary/Keyword: mixed norm

Search Result 73, Processing Time 0.022 seconds

HYBRID DIFFERENCE SCHEMES FOR SINGULARLY PERTURBED PROBLEM OF MIXED TYPE WITH DISCONTINUOUS SOURCE TERM

  • Priyadharshini, R. Mythili;Ramanujam, N.;Valanarasu, T.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.5_6
    • /
    • pp.1035-1054
    • /
    • 2010
  • We consider a mixed type singularly perturbed one dimensional elliptic problem with discontinuous source term. The domain under consideration is partitioned into two subdomains. A convection-diffusion and a reaction-diffusion type equations are posed on the first and second subdomains respectively. Two hybrid difference schemes on Shishkin mesh are constructed and we prove that the schemes are almost second order convergence in the maximum norm independent of the diffusion parameter. Error bounds for the numerical solution and its numerical derivative are established. Numerical results are presented which support the theoretical results.

A mixed $H_2/ H_\infty$ digital control of Inverted pendulum system (도립진자 시스템의 혼합$H_2/ H_\infty$ 디지털 제어)

  • 박종우;곽칠성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.5
    • /
    • pp.1111-1116
    • /
    • 2000
  • The mixed $H_2/ H_\infty$ control method is one of positive approaches to design a controller having both the$H_2$-performance and the $H_\infty$-robust stability. In this paper, Firstly, The tracking Performance to be designed has been represented as $H_2$-norms for the plants with uncertainties. Secondly, $H_\infty$-norm have been set up in order to ensure the robust stabilities. The mixed digital controllers have been designed for an inverted system. The mixed $H_2/ H_\infty$digital controller for the inverted pendulum system was intended to stabilize the unstability of the plant together with the good tracking Performance.

  • PDF

Design of Robust Load Frequency Controller using Mixed Sensitivity based $H_{\infty}$ norm (혼합강도 $H_{\infty}$ 제어기법을 이용한 강인한 부하주파수 제어기 설계)

  • 정형환;김상효;이정필;한길만
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.88-98
    • /
    • 2000
  • In this paper, a robust controller using $H_{\infty}$ control theory has been designed for the load frequency control of interconnected 2-area power system. The main advantage of the proposed $H_{\infty}$ controller is that uncertainties of power system can be included at the stage of controller design. Representation of uncertainties is modeled by multiplicative uncertainly. In the mixed sensitivity problems, disturbance attenuation and uncertainty of the system is treated simultaneously. The robust stability and the performance of model uncertainties are represented by frequency weighted transfer function. The design of load frequency controller for each area was based on state-space approach. The comparative computer simulation results for the proposed controller and the conventional techniques such as the optimal control and the PID one were analyzed at the additions of various disturbances. Their deviation magnitude of frequency and tie line power flow at each area were mainly evaluated. Also the testing results of robustness for the cases that the perturbations of the all parameters of power system were amounted to about 20% were introduced. It was approved that the resultant performances of the proposed $H_{\infty}$ controller with mixed sensitivity were more robust and stable than the one of conventional controllers.

  • PDF

LOCAL REGULARITY CRITERIA OF THE NAVIER-STOKES EQUATIONS WITH SLIP BOUNDARY CONDITIONS

  • Bae, Hyeong-Ohk;Kang, Kyungkeun;Kim, Myeonghyeon
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.597-621
    • /
    • 2016
  • We present regularity conditions for suitable weak solutions of the Navier-Stokes equations with slip boundary data near the curved boundary. To be more precise, we prove that suitable weak solutions become regular in a neighborhood boundary points, provided the scaled mixed norm $L^{p,q}_{x,t}$ with 3/p + 2/q = 2, $1{\leq}q$ < ${\infty}$ is sufficiently small in the neighborhood.

Application of $H{\infty}$ optimization to design of the monitor AGC for a hot strip mill plant (열간압연 Monitor AGC에의 $H{\infty}$ 최적화 기법의 적용)

  • 백기남;류석환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.248-251
    • /
    • 1991
  • A robust monitor AGC(Automatic Gauge Control) system for a hot strip mill plant of POSCO Is designed by minimizing the H.inf. norm of a so called mixed sensitivity function. In order to solve the mininizatlon problem, a polynomial approach proposed by Kwakernaak[5] is used. The controller performance is tested by a computer simulation under various circumstances.

  • PDF

Design of $H_{\infty}$ Controller with Different Weighting Functions Using Convex Combination

  • Kim Min-Chan;Park Seung-Kyu;Kwak Gun-Pyong
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.3
    • /
    • pp.193-197
    • /
    • 2004
  • In this paper, a combination problem of controllers which are the same type of $H_{\infty}$ controllers designed with different weighting functions. This approach can remove the difficulty in the selection of the weighting functions. As a sub-controller, the Youla type of $H_{\infty}$ controller is used. In the $H_{\infty}$ controller, Youla parameterization is used to minimize $H_{\infty}$ norm of mixed sensitivity function by using polynomial approach. Computer simulation results show the robustness improvement and the performance improvement.

Indirect self-tuning regulator with loopshaping

  • Han, Seong-Ho;Yoshihiro, Takita
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.47.6-47
    • /
    • 2001
  • In this paper a new indirect robust self-tuning regulator is proposed including an inverse system of a plant and a robust compensator such that it achieves the desired frequency shape specified by solving the mixed H$\infty$ sensitivity problem within a prescribed tolerance in the H$\infty$ norm. Consequently, in the proposed self-tuning regulator, robust stability is guaranteed in spite of the identification error.

  • PDF

Design of Two-Degree-of-Freedom PI Controllers using the Mixed $H_2/H_{\infty}$ Methods ($H_2 / H_{\infty}$ 혼합 기법을 이용한 2자유도 PI 제어기의 설계)

  • 조용석;박기헌
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.6
    • /
    • pp.12-22
    • /
    • 1996
  • A numerous designs of PI controllers have been suggested to solve out trade-off between tracing and regulating problems. We constructed the PI controller system with two-degree-of-freedom that is more analytic and a better approach to a practical one. In the conventional H$_{2}$ design of optimal PI controllers, the cost function includes only the plant output terms due to the divergent problems. Since the platn input temr is not considered in PI controller design, occasionally, the plant input thends to be either very large or saturated. To solve the prior mentioned problems, we employed a mixed $H_2/H_{\infty}$ method that combines the H$_{2}$ design method to decide optimal parameters of PI controller and the $H_2/H_{\infty}$ design method to minimize the maximum amplitude of plant input. The calculation time of the H$_{infty}$ norm was considerably reduced by the simple scalar function obtained by the wiener-hopf factorization of non-scalar functions.

  • PDF

ASYMPTOTIC-NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL DIFFERENCE EQUATIONS OF MIXED-TYPE

  • SALAMA, A.A.;AL-AMERY, D.G.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.5_6
    • /
    • pp.485-502
    • /
    • 2015
  • A computational method for solving singularly perturbed boundary value problem of differential equation with shift arguments of mixed type is presented. When shift arguments are sufficiently small (o(ε)), most of the existing method in the literature used Taylor's expansion to approximate the shift term. This procedure may lead to a bad approximation when the delay argument is of O(ε). The main idea for this work is to deal with constant shift arguments, which are independent of ε. In the present method, we construct the formally asymptotic solution of the problem using the method of composite expansion. The reduced problem is solved numerically by using operator compact implicit method, and the second problem is solved analytically. Error estimate is derived by using the maximum norm. Numerical examples are provided to support the theoretical results and to show the efficiency of the proposed method.

Dynamic Positioning Control of Floating Platform using $H_{\infty}$ Control Method ($H_{\infty}$ 제어법을 이용한 부유식 플랫폼의 동위치 제어)

  • 유휘룡;김환성;김상봉
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.153-161
    • /
    • 1996
  • This paper presents a design method of dynamic positioning control system for floating platform with rotatable and retractable thruster using $H_{\infty}$ control technique. The norm band of uncertainty is captured by multiplicative perturbation between nominal model and reduced order model. A controller robust to the uncertainty is designed applying $H_{\infty}$ synthesis. The control law satisfying robust stabillity and nominal performance condition is determined through the mixed sensitivity approach. The evaluation for the resultant controller obtained by $H_{\infty}$ synthesis is done through simulations of the closed loop system. The results of $H_{\infty}$ synthesis are compared to those of the traditional LQ synthesis method.

  • PDF