• Title/Summary/Keyword: mitochondrial lipids

Search Result 30, Processing Time 0.032 seconds

Early potential effects of resveratrol supplementation on skeletal muscle adaptation involved in exercise-induced weight loss in obese mice

  • Sun, Jingyu;Zhang, Chen;Kim, MinJeong;Su, Yajuan;Qin, Lili;Dong, Jingmei;Zhou, Yunhe;Ding, Shuzhe
    • BMB Reports
    • /
    • v.51 no.4
    • /
    • pp.200-205
    • /
    • 2018
  • Exercise and resveratrol supplementation exhibit anti-obesity functions in the long term but have not been fully investigated yet in terms of their early potential effectiveness. Mice fed with high-fat diet were categorized into control (Cont), exercise (Ex), resveratrol supplementation (Res), and exercise combined with resveratrol supplementation (Ex + Res) groups. In the four-week period of weight loss, exercise combined with resveratrol supplementation exerted no additional effects on body weight loss but significantly improved whole-body glucose and lipid homeostasis. The combined treatment significantly decreased intrahepatic lipid content but did not affect intramyocellular lipid content. Moreover, the treatment significantly increased the contents of mtDNA and cytochrome c, the expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha and its downstream transcription factors, and the activities of ATPase and citrate synthase. However, exercise, resveratrol, and their combination did not promote myofiber specification toward slow-twitch type. The effects of exercise combined with resveratrol supplementation on weight loss could be partly due to enhanced mitochondrial biogenesis and not to fiber-type shift in skeletal muscle tissues.

Isorhamnetin Protects Human Keratinocytes against Ultraviolet B-Induced Cell Damage

  • Han, Xia;Piao, Mei Jing;Kim, Ki Cheon;Hewage, Susara Ruwan Kumara Madduma;Yoo, Eun Sook;Koh, Young Sang;Kang, Hee Kyoung;Shin, Jennifer H;Park, Yeunsoo;Yoo, Suk Jae;Chae, Sungwook;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • Isorhamnetin (3-methylquercetin) is a flavonoid derived from the fruits of certain medicinal plants. This study investigated the photoprotective properties of isorhamnetin against cell damage and apoptosis resulting from excessive ultraviolet (UV) B exposure in human HaCaT keratinocytes. Isorhamnetin eliminated UVB-induced intracellular reactive oxygen species (ROS) and attenuated the oxidative modification of DNA, lipids, and proteins in response to UVB radiation. Moreover, isorhamnetin repressed UVB-facilitated programmed cell death in the keratinocytes, as evidenced by a reduction in apoptotic body formation, and nuclear fragmentation. Additionally, isorhamnetin suppressed the ability of UVB light to trigger mitochondrial dysfunction. Taken together, these results indicate that isorhamnetin has the potential to protect human keratinocytes against UVB-induced cell damage and death.

Anti-obesity Effect of Crataegus pinnatifida through Gut Microbiota Modulation in High-fat-diet Induced Obese Mice (산사의 장내 미생물 조절을 통한 항비만 효과)

  • Kim, Min-Jee;Choi, Yura;Shin, Na Rae;Lee, Myeong-Jong;Kim, Hojun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.29 no.4
    • /
    • pp.15-27
    • /
    • 2019
  • Objectives This study was performed to evaluate anti-obesity effects of Crataegus pinnatifida (CP) on high-fat-diet induced obese mice. Methods The experimental animals were divided into four groups: normal diet (NOR) group, high fat diet (HFD) group, HFD+Xenical (XEN) group, and HFD+CP (CP) group. NOR group was fed a normal diet and the other three groups were fed high fat diet during the experiment. After the first two weeks of diet, XEN group and CP group were administered with XEN or CP for seven weeks, respectively. After that, we measured body weight, liver weight, fat weight, food intake, and serum concentrations of lipids and liver enzymes. Also the liver, intestine, fat tissue was removed to estimate the obesity-related mRNA expressions and the stool sample was collected to analyze the gut microbiota. Results We found that body weight, fat weight, and triglyceride level were decreased significantly in CP group compared to HFD group. Also CP significantly suppressed gene expressions associated with lipogenesis and inflammation, and increased gene expressions of browning of white adipose tissue and mitochondrial biogenesis. Moreover, it shifted the microbial diversity closer to that of NOR group and increased Firmicutes/Bacteriodetes ratio. Conclusions These results suggest that CP decrease body weight, fat weight and serum triglyceride. Also it inhibit inflammation and adipogenesis, altering gut microbial diversity and abundance. In conclusion, CP could be used as a therapeutic drug for obesity via gut microbiota modulation.

Purpurogallin Protects Keratinocytes from Damage and Apoptosis Induced by Ultraviolet B Radiation and Particulate Matter 2.5

  • Zhen, Ao Xuan;Piao, Mei Jing;Hyun, Yu Jae;Kang, Kyoung Ah;Ryu, Yea Seong;Cho, Suk Ju;Kang, Hee Kyoung;Koh, Young Sang;Ahn, Mee Jung;Kim, Tae Hoon;Hyun, Jin Won
    • Biomolecules & Therapeutics
    • /
    • v.27 no.4
    • /
    • pp.395-403
    • /
    • 2019
  • Purpurogallin, a natural phenol obtained from oak nutgalls, has been shown to possess antioxidant, anticancer, and anti-inflammatory effects. Recently, in addition to ultraviolet B (UVB) radiation that induces cell apoptosis via oxidative stress, particulate matter 2.5 ($PM_{2.5}$) was shown to trigger excessive production of reactive oxygen species. In this study, we observed that UVB radiation and $PM_{2.5}$ severely damaged human HaCaT keratinocytes, disrupting cellular DNA, lipids, and proteins and causing mitochondrial depolarization. Purpurogallin protected HaCaT cells from apoptosis induced by UVB radiation and/or $PM_{2.5}$. Furthermore, purpurogallin effectively modulates the pro-apoptotic and anti-apoptotic proteins under UVB irradiation via caspase signaling pathways. Additionally, purpurogallin reduced apoptosis via MAPK signaling pathways, as demonstrated using MAPK-p38, ERK, and JNK inhibitors. These results indicate that purpurogallin possesses antioxidant effects and protects cells from damage and apoptosis induced by UVB radiation and $PM_{2.5}$.

Perilipin 5 is a novel target of nuclear receptor LRH-1 to regulate hepatic triglycerides metabolism

  • Pantha, Rubee;Lee, Jae-Ho;Bae, Jae-Hoon;Koh, Eun Hee;Shin, Minsang;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • v.54 no.9
    • /
    • pp.476-481
    • /
    • 2021
  • Liver receptor homolog-1 (LRH-1) has emerged as a regulator of hepatic glucose, bile acid, and mitochondrial metabolism. However, the functional mechanism underlying the effect of LRH-1 on lipid mobilization has not been addressed. This study investigated the regulatory function of LRH-1 in lipid metabolism in maintaining a normal liver physiological state during fasting. The Lrh-1f/f and LRH-1 liver-specific knockout (Lrh-1LKO) mice were either fed or fasted for 24 h, and the liver and serum were isolated. The livers were used for qPCR, western blot, and histological analysis. Primary hepatocytes were isolated for immunocytochemistry assessments of lipids. During fasting, the Lrh-1LKO mice showed increased accumulation of triglycerides in the liver compared to that in Lrh-1f/f mice. Interestingly, in the Lrh-1LKO liver, decreases in perilipin 5 (PLIN5) expression and genes involved in β-oxidation were observed. In addition, the LRH-1 agonist dialauroylphosphatidylcholine also enhanced PLIN5 expression in human cultured HepG2 cells. To identify new target genes of LRH-1, these findings directed us to analyze the Plin5 promoter sequence, which revealed -1620/-1614 to be a putative binding site for LRH-1. This was confirmed by promoter activity and chromatin immunoprecipitation assays. Additionally, fasted Lrh-1f/f primary hepatocytes showed increased co-localization of PLIN5 in lipid droplets (LDs) compared to that in fasted Lrh-1LKO primary hepatocytes. Overall, these findings suggest that PLIN5 might be a novel target of LRH-1 to mobilize LDs, protect the liver from lipid overload, and manage the cellular needs during fasting.

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park;Eun Kyeong Lee;Joowon Yim;Min Hoo Lee;Eojin Lee;Young-Sun Lee;Wonhyo Seo
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.253-263
    • /
    • 2023
  • The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

Effects of Low Level of Levan Feeding on Serum Lipids, Adiposity and UCP Expression in Rats (저농도 레반 공급이 혈중 지질 및 체지방 형성과 UCP 발현에 미치는 영향)

  • 강순아;홍경희;장기효;김소혜;조여원
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.31 no.5
    • /
    • pp.788-795
    • /
    • 2002
  • This study described the effect of levan (9-2,6-linked fructose polymer) feeding on serum lipids, adiposity and uncoupling protein (UCP) expression in growing rats. Levan was synthesized from sucrose using bacterial levansucrase. UCP is a mitochondrial protein that uncouples the respiratory chain from oxidative Phosphorylation and generates heat instead of ATP, thereby increase energy expenditure. We observed that 3% or 5% levan containing diet reduced serum triglyceride levels, visceral and peritoneal fat mass and induced the UCP expression in rats fed high fat diet in previous study. To determine whether the intake of low level of levan may have the hypolipidemic and anti-obesity effect, 4 wk old Sprague Dawley male rats were fed AIN-76A diet for 6 wk, and sub-sequently fed 1% or 2% levan solution for further 5 wk. Intake of 1% levan in liquid form reduced serum triglyceride and serum total cholesterol levels to 50% and 66% of control group, respectively. Although epididymal and peritoneal fat masses were not affected by levan feeding, visceral fat mass was lower in 1% levan group compared to control group. The expression of UCP2 mRNA in brown adipose tissue, skeletal muscle and hypothalamus and UCP3 mRNA in skeletal muscle were not changed by levan feeding, while the UCP2 mRNA in white adipose tissue was up-regulated by levan feeding. In conclusions, intake of low level of levan solution reduced serum triglyceride and total cholesterol, restrained the visceral fat accumulation and increased UCP expression in white adipose tissue in rats. This study suggests that hypolipidemic and anti-obesity effect of levan attributed to anti-lipogenesis and inefficeint energy utilization by up-regulation of UCPs.

Hypoglycemic and Antioxidative Effects of Fermented Chaga Mushroom (Inonotus obliquus) on Streptozotocin-induced Diabetic Rats (Streptozotocin 유발 당뇨쥐에서 발효 차가버섯의 항당뇨 및 항산화 효과)

  • Cha Jae-Young;Jun Bang-Sil;Lee Chi-Hyeoung;Yooi Ki-Soo;Moon Jae-Chul;Cho Young-Su
    • Journal of Life Science
    • /
    • v.15 no.5 s.72
    • /
    • pp.809-818
    • /
    • 2005
  • The effects of fermented chaga mushroom (Inonotus obliquus) on the concentrations of serum glucose, insulin, lipids and lipid peroxidation in streptozotocin (STZ)-induced diabetic rats were investigated. Rats were fed a semisynthetic diet supplemented with 50 g/kg chaga mushroom powder (the CM group) and fermented chaga mushroom powder (the FCM group), and no supplemented (the control group) for 3 weeks. The polysaccharide concentrations were CM by $42.9\%$ and FCM by $ 39.1\%$, and the total polyphenol concentrations were CM by $ 0.80\%$ and FCM by $0.91\%$. Feed intakes and water consumption, serum glucose, insulin, triglyceride, and blood urea nitrogen concentrations were significantly lower in the FCM group than in both the CM and control groups. The activities of AST and ALT were also significantly lower in the FCM group than in the control group. No significant differences were detected with regard to the serum cholesterol and creatinine concentrations among the experimental groups. Lipid peroxidations in hepatic homogenate, microsomal and mitochondrial subcellular and pancreas were significantly lowered by the administration of FCM in the STZ-diabetic rats. Hepatic glutathione concentrations, which is closely associated with antioxidant system, was significantly higher in the FCM group than in the control group, indicating a marked effect of FCM administration on the endogenous antioxidant system. However, CM treatment showed a moderate antioxidative activity in the STZ-diabetic rats. Our results indicate that fermented chaga mushroom exert hypoglycemic and antioxidative effects in type 1 diabetes mellitus.

Apoptotic Effect of co-treatment with HS-1200 and Cisplatin on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line (HS-1200과 cisplatin의 병용처리가 사람구강암세포에 미치는 세포자멸사 효과에 대한 연구)

  • Kim, Duk-Han;Kim, In-Ryoung;Park, Bong-Soo;Ahn, Yong-Woo;Jeong, Sung-Hee
    • Journal of Oral Medicine and Pain
    • /
    • v.38 no.3
    • /
    • pp.221-233
    • /
    • 2013
  • Bile acids are polar derivatives of cholesterol essential for the absorption of dietary lipids and regulate the transcription of genes that control cholesterol homeostasis. Recently it have been identified the synthetic chenodeoxycholic acid (CDCA) derivatives HS-1200 and cisplatin showed apoptisis-inducing activity on various cancer cells in vivo and in vitro. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with HS-1200 and cisplatin on human tongue squamous cell carcinoma cells (SCC25 cells). To investigate whether the co-treatment with HS-1200 and cisplatin compared to each single treatment efficiently reduces the viability of SCC25 cells, MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis DNA hypoploidy. Westen blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) change were also assayed. In this study, co-treatment with HS-1200 and cisplatin on SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensations, DNA fragmentation, reduction of MMP and proteasome activity, the increase of Bax and the decrease of Bcl-2, decrease of DNA content, the release of cytochrome c into cytosol, translocation of AIF and DFF40 (CAD) onto nuclei, and activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD) whereas each single treated SCC25 cells did not show these patterns. Although the single treatment of $25{\mu}M$ HS-1200 and $4{\mu}g/ml$ cisplatin for 24 h did not induce apoptosis, the co-treatment of these reagents prominently induced apoptosis. Therefore our data provide the possibility that the combination therapy with HS-1200 and cisplatin could be considered as a novel therapeutic strategy for human squamous cell carcinoma.

Effect of Korean Red Ginseng Powder on the Lipid Concentrations and Tissue Lipid Peroxidation in the Rats Fed High Fat Diet (고지방급여 흰쥐의 혈청과 간의 지질 농도 및 조직 과산화지질 농도에 미치는 홍삼분말의 영향)

  • 차재영;전방실;조영수
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.1
    • /
    • pp.124-130
    • /
    • 2003
  • Effect of Korean red ginseng (KRG) on the level of serum and liver lipids and lipid peroxidation was investigated in the rats fed high fat diet. Content of serum total cholesterol was significantly decreased (P<0.05) in KRG I group and KRG II group. Content of HDL-cholesterol was significantly increased by 69.75% and 39.15% in KRG I and KRG II group compared to control group, respectively. Atherogenic index (hi) was also significantly decreased by 74.76% and 37.38% in KRG I and KRG II groups compared to control group, respectively. Serum triglyceride content was significantly decreased (p<0.05) in only KRG II group. Antioxidative activity of KRG on the lipid peroxidation of serum and tissues in rats was also studied in vivo by measuring the formation of thiobarbituric acid reactive substances (TBARS). Contents of TBARS in the serum of both KRG groups were significantly decreased (p<0.05) and that of nonheme iron in serum was significantly increased (p<0.05) in a dose-dependent manner, which suggested that lipid peroxidation contents are inversely correlated with serum nonheme iron content. Content of TBARS in liver was significantly decreased (p<0.05) in KRG I and KRG II groups, without any influence in other tissues. Content of TBIARS in liver microsomal fractions stimulated by Fe$^{2+}$/ascorbate was significantly decreased (p<0.05) in KRG I and KRG II groups, whereas this observation did not occur in liver mitochondrial fractions. When the effect of KRG on TBARS content in the liver fractions of homogenates, microsomes, and mitochodria stimulated by Fe$^{2+}$/ascorbate was tested in vitro experimental model, TBARS of liver three fractions was significantly decreased at 6 mg/mL KRG compared with those of control. These results suggested that KRG powder have hypocholesterolemic effect as well as antioxidative effect in the serum and liver of the rats fed high fat diet.