Browse > Article
http://dx.doi.org/10.5713/ajas.14.0582

Effects of Castration on Expression of Lipid Metabolism Genes in the Liver of Korean Cattle  

Baik, Myunggi (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Nguyen, Trang Hoa (Department of Molecular Biotechnology, Chonnam National University)
Jeong, Jin Young (National Institute of Animal Science, RDA)
Piao, Min Yu (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Kang, Hyeok Joong (Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.28, no.1, 2015 , pp. 127-134 More about this Journal
Abstract
Castration induces the accumulation of body fat and deposition of intramuscular fat in Korean cattle, resulting in improved beef quality. However, little is known about the metabolic adaptations in the liver following castration. To understand changes in lipid metabolism following castration, hepatic expression levels of lipid metabolism genes were compared between Korean bulls and steers. Steers had higher (p<0.001) hepatic lipids contents and higher (p<0.01) mRNA levels of lipogenic acetyl-CoA carboxylase. This differential gene expression may, in part, contribute to increased hepatic lipid content following the castration of bulls. However, we found no differences in the hepatic expression levels of genes related to triglyceride synthesis (mitochondrial glycerol-3-phosphate acyltransferase, diacylglycerol O-acyltransferase 1 and 2) and fatty acid (FA) oxidation (carnitine palmitoyltransferase 1A, C-4 to C-12 straight chain acyl-CoA dehydrogenase, very long chain acyl-CoA dehydrogenase) between bulls and steers. No differences in gene expression for very-low-density lipoprotein (VLDL) secretion, including apolipoprotein B mRNA and microsomal triglyceride transfer protein (MTTP) protein, were observed in the liver although MTTP mRNA levels were higher in steers compared to bulls. In conclusion, FA synthesis may contribute to increased hepatic lipid deposition in steers following castration. However, hepatic lipid metabolism, including triglyceride synthesis, FA oxidation, and VLDL secretion, was not significantly altered by castration. Our results suggest that hepatic lipid metabolism does not significantly contribute to increased body fat deposition in steers following castration.
Keywords
Korean Cattle; Liver; Bulls; Steers; Gene Expression;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Graulet, B., D. Gruffat, D. Durand, and D. Bauchart. 1998. Fatty acid metabolism and very low density lipoprotein secretion in liver slices from rats and preruminant calves. J. Biochem. 124:1212-1219.   DOI   ScienceOn
2 Grummer, R. R. 1993. Etiology of lipid-related metabolic disorders in periparturient dairy cows. J. Dairy Sci. 76:3882-3896.   DOI
3 Jeong, J., J. Bong, G. D. Kim, S. T. Joo, H. J. Lee, and M. Baik. 2013. Transcriptome changes favoring intramuscular fat deposition in the longissimus muscle following castration of bulls. J. Anim. Sci. 91:4692-4704.   DOI   ScienceOn
4 KAPE. 2014. Korea Institute for Animal Products Quality Evaluation. http://www.ekape.or.kr/view/eng. 07-15-2014.
5 Katoh, N. 2002. Relevance of apolipoproteins in the development of fatty liver and fatty liver-related peripartum diseases in dairy cows. J. Vet. Med. Sci. 64:293-307.   DOI   ScienceOn
6 Lin, H. Y., I. C. Yu, R. S. Wang, Y. T. Chen, N. C. Liu, S. Altuwaijri, C. L. Hsu, W. L. Ma, J. Jokinen, J. D. Sparks, S. Yeh, and C. Chang. 2008. Increased hepatic steatosis and insulin resistance in mice lacking hepatic androgen receptor. Hepatology 47:1924-1935.   DOI   ScienceOn
7 Livak, K. J. and T. D. Schmittgen. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402-408.   DOI   ScienceOn
8 Park, G. B., S. S. Moon, Y. D. Ko, J. K. Ha, J. G. Lee, H. H. Chang, and S. T. Joo. 2002. Influence of slaughter weight and sex on yield and quality grades of Hanwoo (Korean native cattle) carcasses. J. Anim. Sci. 80:129-136.
9 Loor, J. J., H. M. Dann, N. A. Guretzky, R. E. Everts, R. Oliveira, C. A. Green, N. B. Litherland, S. L. Rodriguez-Zas, H. A. Lewin, and J. K. Drackley. 2006. Plane of nutrition prepartum alters hepatic gene expression and function in dairy cows as assessed by longitudinal transcript and metabolic profiling. Physiol. Genomics 27:29-41.   DOI   ScienceOn
10 Love-Gregory, L., R. Sherva, L. Sun, J. Wasson, T. Schappe, A. Doria, D. C. Rao, S. C. Hunt, S. Klein, R. J. Neuman, M. A. Permutt, and N. A. Abumrad. 2008. Variants in the CD36 gene associate with the metabolic syndrome and high-density lipoprotein cholesterol. Hum. Mol. Genet. 17:1695-1704.   DOI   ScienceOn
11 Maltin, C., D. Balcerzak, R. Tilley, and M. Delday. 2003. Determinants of meat quality: tenderness. Proc. Nutr. Soc. 62:337-347.   DOI   ScienceOn
12 Shimano, H., N. Yahagi, M. Amemiya-Kudo, A. H. Hasty, J. Osuga, Y. Tamura, F. Shionoiri, Y. Iizuka, K. Ohashi, K. Harada, T. Gotoda, S. Ishibashi, and N. Yamada. 1999. Sterol regulatory element-binding protein-1 as a key transcription factor for nutritional induction of lipogenic enzyme genes. J. Biol. Chem. 274:35832-35839.   DOI   ScienceOn
13 Van Den Top, A. M., T. Wensing, M. J. Geelen, G. H. Wentink, A. T. Van't Klooster, and A. C. Beynen. 1995. Time trends of plasma lipids and enzymes synthesizing hepatic triacylglycerol during postpartum development of fatty liver in dairy cows. J. Dairy Sci. 78:2208-2220.   DOI   ScienceOn
14 Emery, R. S., J. S. Liesman, and T. H. Herdt. 1992. Metabolism of long-chain fatty-acids by ruminant liver. J. Nutr. 122:832-837.
15 Anderson, N. and J. Borlak. 2008. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol. Rev. 60:311-357.   DOI   ScienceOn
16 Bonen, A., A. Chabowski, J. J. Luiken, and J. F. Glatz. 2007. Is membrane transport of FFA mediated by lipid, protein, or both? Mechanisms and regulation of protein-mediated cellular fatty acid uptake: Molecular, biochemical, and physiological evidence. Physiology (Bethesda, Md.) 22:15-29.
17 Bong, J. J., J. Y. Jeong, P. Rajasekar, Y. M. Cho, E. G. Kwon, H. C. Kim, B. H. Paek, and M. Baik. 2012. Differential expression of genes associated with lipid metabolism in longissimus dorsi of Korean bulls and steers. Meat Sci. 91:284-293.   DOI   ScienceOn
18 Chen, X., X. Wang, Z. Li, L. Kong, G. Liu, J. Fu, and A. Wang. 2012. Molecular cloning, tissue expression and protein structure prediction of the porcine 3-hydroxy-3-methylglutaryl-Coenzyme A reductase (HMGR) gene. Gene 495:170-177.   DOI   ScienceOn
19 Edwards, P. A., M. A. Kennedy, and P. A. Mak. 2002. LXRs; oxysterol-activated nuclear receptors that regulate genes controlling lipid homeostasis. Vascul. Pharmacol. 38:249-256.   DOI   ScienceOn
20 Folch, J., M. Lees, and G. H. Sloane Stanley. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497-509.
21 Hausman, G. J., M. V. Dodson, K. Ajuwon, M. Azain, K. M. Barnes, L. L. Guan, Z. Jiang, S. P. Poulos, R. D. Sainz, S. Smith, M. Spurlock, J. Novakofski, M. E. Fernyhough, and W. G. Bergen. 2009. Board-invited review: the biology and regulation of preadipocytes and adipocytes in meat animals. J. Anim. Sci. 87:1218-1246.   DOI   ScienceOn
22 Goldberg, I. J. and M. Merkel. 2001. Lipoprotein lipase: physiology, biochemistry, and molecular biology. Front. Biosci. 6:D388-D405.   DOI