Browse > Article
http://dx.doi.org/10.14476/jomp.2013.38.3.221

Apoptotic Effect of co-treatment with HS-1200 and Cisplatin on SCC25 Human Tongue Squamous Cell Carcinoma Cell Line  

Kim, Duk-Han (Department of Oral Anatomy, School of Dentistry, Pusan National University)
Kim, In-Ryoung (Department of Oral Anatomy, School of Dentistry, Pusan National University)
Park, Bong-Soo (Department of Oral Anatomy, School of Dentistry, Pusan National University)
Ahn, Yong-Woo (Department of Oral Medicine, School of Dentistry, Pusan National University)
Jeong, Sung-Hee (Department of Oral Medicine, School of Dentistry, Pusan National University)
Publication Information
Journal of Oral Medicine and Pain / v.38, no.3, 2013 , pp. 221-233 More about this Journal
Abstract
Bile acids are polar derivatives of cholesterol essential for the absorption of dietary lipids and regulate the transcription of genes that control cholesterol homeostasis. Recently it have been identified the synthetic chenodeoxycholic acid (CDCA) derivatives HS-1200 and cisplatin showed apoptisis-inducing activity on various cancer cells in vivo and in vitro. This study was undertaken to investigate the synergistic apoptotic effect of co-treatment with HS-1200 and cisplatin on human tongue squamous cell carcinoma cells (SCC25 cells). To investigate whether the co-treatment with HS-1200 and cisplatin compared to each single treatment efficiently reduces the viability of SCC25 cells, MTT assay was conducted. The induction and augmentation of apoptosis were confirmed by DNA electrophoresis, Hoechst staining and an analysis DNA hypoploidy. Westen blot analysis and immunofluorescent staining were also performed to evaluate the expression levels and the translocation of apoptosis-related proteins following this co-treatment. Furthermore, proteasome activity and mitochondrial membrane potential (MMP) change were also assayed. In this study, co-treatment with HS-1200 and cisplatin on SCC25 cells showed several lines of apoptotic manifestation such as nuclear condensations, DNA fragmentation, reduction of MMP and proteasome activity, the increase of Bax and the decrease of Bcl-2, decrease of DNA content, the release of cytochrome c into cytosol, translocation of AIF and DFF40 (CAD) onto nuclei, and activation of caspase-9, caspase-7, caspase-3, PARP and DFF45 (ICAD) whereas each single treated SCC25 cells did not show these patterns. Although the single treatment of $25{\mu}M$ HS-1200 and $4{\mu}g/ml$ cisplatin for 24 h did not induce apoptosis, the co-treatment of these reagents prominently induced apoptosis. Therefore our data provide the possibility that the combination therapy with HS-1200 and cisplatin could be considered as a novel therapeutic strategy for human squamous cell carcinoma.
Keywords
Apoptosis; Bile acid; HS-1200; Cisplatin; Human tongue squamous carcinoma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Orlowski RZ. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ 1999;6: 303-313.   DOI   ScienceOn
2 Williams GT. Programmed cell death: apoptosis and oncogenesis. Cell 1991;65:1097-1098.   DOI   ScienceOn
3 Yuan J. Evolutionary conservation of a genetic pathway of programmed cell death. J Cell Biochem 1996;60:4-11.   DOI
4 Susin SA, Lorenzo HK, Zamzami N et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999;397:441-446.   DOI   ScienceOn
5 Shen J, Huang C, Jiang L et al. Enhancement of cisplatin induced apoptosis by suberoylanilide hydroxamic acid in human oral squamous cell carcinoma cell lines. Biochem Pharmacol 2007;73: 1901-1909.   DOI   ScienceOn
6 Jones B, Roberts PJ, Faubion WA, Kominami E, Gores GJ. Cystatin A expression reduces bile salt-induced apoptosis in a rat hepatoma cell line. Am J Physiol 1998;275:G723-730.
7 Jeong JH, Park JS, Moon B et al. Orphan nuclear receptor Nur77 translocates to mitochondria in the early phase of apoptosis induced by synthetic chenodeoxycholic acid derivatives in human stomach cancer cell line SNU-1. Ann N Y Acad Sci 2003;1010:171-177.   DOI   ScienceOn
8 Martinez JD, Stratagoules ED, LaRue JM et al. Different bile acids exhibit distinct biological effects: the tumor promoter deoxycholic acid induces apoptosis and the chemopreventive agent ursodeoxycholic acid inhibits cell proliferation. Nutr Cancer 1998;31:111-118.   DOI   ScienceOn
9 Im EO, Choi YH, Paik KJ et al. Novel bile acid derivatives induce apoptosis via a p53-independent pathway in human breast carcinoma cells. Cancer Lett 2001;163:83-93.   DOI   ScienceOn
10 Im EO, Lee S, Suh H, Kim KW, Bae YT, Kim ND. A novel ursodeoxycholic acid derivative induces apoptosis in human MCF-7 breast cancer cells. Pharm Pharmacol Commun 1999;5:293-298.   DOI   ScienceOn
11 Seo SY, Jun EJ, Jung SM et al. Synthetic chenodeoxycholic acid derivative HS-1200-induced apoptosis of p815 mastocytoma cells is augmented by co-treatment with lactacystin. Anticancer Drugs 2003;14:219-225.   DOI   ScienceOn
12 Park SE, Choi HJ, Yee SB et al. Synthetic bile acid derivatives inhibit cell proliferation and induce apoptosis in HT-29 human colon cancer cells. Int J Oncol 2004;25:231-236.
13 Wang G, Reed E, Li QQ. Molecular basis of cellular response to cisplatin chemotherapy in non-small cell lung cancer (Review). Oncol Rep 2004;12: 955-965.
14 Im E, Choi SH, Suh H et al. Synthetic bile acid derivatives induce apoptosis through a c-Jun N-terminal kinase and NF-kappaB-dependent process in human cervical carcinoma cells. Cancer Lett 2005;229:49-57.   DOI   ScienceOn
15 Kim ND, Im E, Yoo YH, Choi YH. Modulation of the cell cycle and induction of apoptosis in human cancer cells by synthetic bile acids. Curr Cancer Drug Targets 2006;6:681-689.   DOI   ScienceOn
16 Choi YH, Im EO, Suh H et al. Apoptosis and modulation of cell cycle control by synthetic derivatives of ursodeoxycholic acid and chenodeoxycholic acid in human prostate cancer cells. Cancer Lett 2003;199:157-167.   DOI   ScienceOn
17 Choi YH, Im EO, Suh H et al. Apoptotic activity of novel bile acid derivatives in human leukemic T cells through the activation of caspases. Int J Oncol 2001;18:979-984.
18 Yoon HS, Rho JH, Yoo KW et al. Synthetic bile acid derivatives induce nonapoptotic death of human retinal pigment epithelial cells. Curr Eye Res 2001;22: 367-374.   DOI   ScienceOn
19 Cooley ME, Davis LE, DeStefano MAbrahm J. Cisplatin: a clinical review. Part I--Current uses of cisplatin and administration guidelines. Cancer Nurs 1994;17:173-184.
20 Gonzalez VM, Fuertes MA, Alonso C, Perez JM. Is cisplatin-induced cell death always produced by apoptosis? Mol Pharmacol 2001;59:657-663.   DOI
21 Seki K, Yoshikawa H, Shiiki K et al. Cisplatin (CDDP) specifically induces apoptosis via sequential activation of caspase-8, -3 and -6 in osteosarcoma. Cancer Chemother Pharmacol 2000;45:199-206.   DOI   ScienceOn
22 Del Bello B, Valentini MA, Comporti M, Maellaro E. Cisplatin-induced apoptosis in melanoma cells: role of caspase-3 and caspase-7 in Apaf-1 proteolytic cleavage and in execution of the degradative phases. Ann N Y Acad Sci 2003;1010:200-204.   DOI   ScienceOn
23 Yde CW, Issinger OG. Enhancing cisplatin sensitivity in MCF-7 human breast cancer cells by down-regulation of Bcl-2 and cyclin D1. Int J Oncol 2006;29:1397-1404.
24 Garcia-Berrocal JR, Nevado J, Ramirez-Camacho R et al. The anticancer drug cisplatin induces an intrinsic apoptotic pathway inside the inner ear. Br J Pharmacol 2007;152:1012-1020.
25 Zhou H, Kato A, Yasuda H et al. The induction of cell cycle regulatory and DNA repair proteins in cisplatin-induced acute renal failure. Toxicol Appl Pharmacol 2004;200:111-120.   DOI   ScienceOn
26 Fox SA, Kusmiaty, Loh SS, Dharmarajan AM, Garlepp MJ. Cisplatin and TNF-alpha downregulate transcription of Bcl-xL in murine malignant mesothelioma cells. Biochem Biophys Res Commun 2005;337:983-991.   DOI   ScienceOn
27 Gagnon V, Van Themsche C, Turner S, Leblanc V, Asselin E. Akt and XIAP regulate the sensitivity of human uterine cancer cells to cisplatin, doxorubicin and taxol. Apoptosis 2008;13:259-271.   DOI   ScienceOn
28 Kondo K, Yamasaki S, Inoue N et al. Prospective antitumor effects of the combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and cisplatin against esophageal squamous cell carcinoma. Surg Today 2006;36:966-974.   DOI   ScienceOn
29 Mohammad RM, Banerjee S, Li Y et al. Cisplatin-induced antitumor activity is potentiated by the soy isoflavone genistein in BxPC-3 pancreatic tumor xenografts. Cancer 2006;106:1260-1268.   DOI   ScienceOn
30 Iwase M, Yoshiba S, Uchid M et al. Enhanced susceptibility to apoptosis of oral squamous cell carcinoma cells subjected to combined treatment with anticancer drugs and phosphatidylinositol 3-kinase inhibitors. Int J Oncol 2007;31:1141-1147.
31 Green DR, Reed JC. Mitochondria and apoptosis. Science 1998;281:1309-1312.   DOI   ScienceOn
32 Pisano C, Vesci L, Fodera R et al. Antitumor activity of the combination of synthetic retinoid ST1926 and cisplatin in ovarian carcinoma models. Ann Oncol 2007;18:1500-1505.   DOI   ScienceOn
33 Wagenknecht B, Hermisson M, Groscurth P et al. Proteasome inhibitor-induced apoptosis of glioma cells involves the processing of multiple caspases and cytochrome c release. J Neurochem 2000;75:2288- 2297.
34 Drexler HC, Risau W, Konerding MA. Inhibition of proteasome function induces programmed cell death in proliferating endothelial cells. FASEB J 2000;14: 65-77.   DOI
35 Kroemer G. Mitochondrial control of apoptosis: an introduction. Biochem Biophys Res Commun 2003; 304:433-435.   DOI   ScienceOn
36 Golab J, Stoklosa T, Czajka A et al. Synergistic antitumor effects of a selective proteasome inhibitor and TNF in mice. Anticancer Res 2000;20:1717- 1721.
37 Marshansky V, Wang X, Bertrand R et al. Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol 2001;166:3130- 3142.   DOI
38 Daugas E, Nochy D, Ravagnan L et al. Apoptosisinducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 2000;476:118-123.   DOI   ScienceOn
39 Acehan D, Jiang X, Morgan DG et al. Threedimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9:423-432.   DOI   ScienceOn
40 Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev 1999;13:1899-1911.   DOI   ScienceOn
41 Porter AG. Protein translocation in apoptosis. Trends Cell Biol 1999;9:394-401.   DOI   ScienceOn
42 Cheng AC, Jian CB, Huang YT et al. Induction of apoptosis by Uncaria tomentosa through reactive oxygen species production, cytochrome c release, and caspases activation in human leukemia cells. Food Chem Toxicol 2007;45:2206-2218.   DOI   ScienceOn