DOI QR코드

DOI QR Code

Exosomes: Nomenclature, Isolation, and Biological Roles in Liver Diseases

  • Seol Hee Park (College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University) ;
  • Eun Kyeong Lee (College of Pharmacy, Ewha Womans University) ;
  • Joowon Yim (College of Pharmacy, Ewha Womans University) ;
  • Min Hoo Lee (College of Pharmacy, Ewha Womans University) ;
  • Eojin Lee (College of Pharmacy, Ewha Womans University) ;
  • Young-Sun Lee (Department of Internal Medicine, Korea University Medical Center) ;
  • Wonhyo Seo (College of Pharmacy, Ewha Womans University)
  • Received : 2022.12.13
  • Accepted : 2023.03.10
  • Published : 2023.05.01

Abstract

The biogenesis and biological roles of extracellular vesicles (EVs) in the progression of liver diseases have attracted considerable attention in recent years. EVs are membrane-bound nanosized vesicles found in different types of body fluids and contain various bioactive materials, including proteins, lipids, nucleic acids, and mitochondrial DNA. Based on their origin and biogenesis, EVs can be classified as apoptotic bodies, microvesicles, and exosomes. Among these, exosomes are the smallest EVs (30-150 nm in diameter), which play a significant role in cell-to-cell communication and epigenetic regulation. Moreover, exosomal content analysis can reveal the functional state of the parental cell. Therefore, exosomes can be applied to various purposes, including disease diagnosis and treatment, drug delivery, cell-free vaccines, and regenerative medicine. However, exosome-related research faces two major limitations: isolation of exosomes with high yield and purity and distinction of exosomes from other EVs (especially microvesicles). No standardized exosome isolation method has been established to date; however, various exosome isolation strategies have been proposed to investigate their biological roles. Exosome-mediated intercellular communications are known to be involved in alcoholic liver disease and nonalcoholic fatty liver disease development. Damaged hepatocytes or nonparenchymal cells release large numbers of exosomes that promote the progression of inflammation and fibrogenesis through interactions with neighboring cells. Exosomes are expected to provide insight on the progression of liver disease. Here, we review the biogenesis of exosomes, exosome isolation techniques, and biological roles of exosomes in alcoholic liver disease and nonalcoholic fatty liver disease.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant (2018R1A5A2025286, 2021R1C1C1009445 and 2022R1C1C1008912), Korea Mouse Phenotyping Project (2014M3A9D5A01073556), Korea Basic Science Institute grant (National research Facilities and Equipment Center; 2021R1A6C101A442) and Supporting Program of The Korean Association for the Study of the Liver and The Korean Liver Foundation.

References

  1. Avci, E. and Balci-Peynircioglu, B. (2016) An overview of exosomes: from biology to emerging roles in immune response. Acta Medica 47, 2-10.
  2. Bala, S., Babuta, M., Catalano, D., Saiju, A. and Szabo, G. (2021) Alcohol promotes exosome biogenesis and release via modulating Rabs and miR-192 expression in human hepatocytes. Front. Cell Dev. Biol. 9, 787356.
  3. Barros, F. M., Carneiro, F., Machado, J. C. and Melo, S. A. (2018) Exosomes and immune response in cancer: friends or foes? Front. Immunol. 9, 730.
  4. Battistelli, M. and Falcieri, E. (2020) Apoptotic bodies: particular extracellular vesicles involved in intercellular communication. Biology (Basel) 9, 21.
  5. Becker, A., Thakur, B. K., Weiss, J. M., Kim, H. S., Peinado, H. and Lyden, D. (2016) Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30, 836-848. https://doi.org/10.1016/j.ccell.2016.10.009
  6. Behbahani, G. D., Khani, S., Hosseini, H. M., Abbaszadeh-Goudarzi, K. and Nazeri, S. (2016) The role of exosomes contents on genetic and epigenetic alterations of recipient cancer cells. Iran. J. Basic Med. Sci. 19, 1031-1039.
  7. Belting, M. and Wittrup, A. (2008) Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J. Cell Biol. 183, 1187-1191. https://doi.org/10.1083/jcb.200810038
  8. Brzozowski, J. S., Jankowski, H., Bond, D. R., McCague, S. B., Munro, B. R., Predebon, M. J., Scarlett, C. J., Skelding, K. A. and Weidenhofer J. (2018) Lipidomic profiling of extracellular vesicles derived from prostate and prostate cancer cell lines. Lipids Health Dis. 17, 211.
  9. Cannito, S., Morello, E., Bocca, C., Foglia, B., Benetti, E., Novo, E., Chiazza, F., Rogazzo, M., Fantozzi, R., Povero, D., Sutti, S., Bugianesi, E., Feldstein, A. E., Albano, E., Collino, M. and Parola, M. (2017) Microvesicles released from fat-laden cells promote activation of hepatocellular NLRP3 inflammasome: a pro-inflammatory link between lipotoxicity and non-alcoholic steatohepatitis. PLoS One 12, e0172575.
  10. Chang, Y., Han, J. A., Kang, S. M., Jeong, S. W., Ryu, T., Park, H. S., Yoo, J. J., Lee, S. H., Kim, S. G., Kim, Y. S., Kim, H. S., Jin, S. Y., Ryu, S. and Jang, J. Y. (2021) Clinical impact of serum exosomal microRNA in liver fibrosis. PLoS One 16, e0255672.
  11. Chen, J., Li, P., Zhang, T., Xu, Z., Huang, X., Wang, R. and Du, L. (2021) Review on strategies and technologies for exosome isolation and purification. Front. Bioeng. Biotechnol. 9, 811971.
  12. Cheong, J. K., Rajgor, D., Lv, Y., Chung, K. Y., Tang, Y. C. and Cheng, H. (2022) Noncoding RNome as enabling biomarkers for precision health. Int. J. Mol. Sci. 23, 10390.
  13. Cho, S., Yang, H. C. and Rhee, W. J. (2020) Development and comparative analysis of human urine exosome isolation strategies. Process Biochem. 88, 197-203. https://doi.org/10.1016/j.procbio.2019.09.017
  14. Cho, Y. E., Mezey, E., Hardwick, J. P., Salem, N., Jr., Clemens, D. L. and Song, B. J. (2017) Increased ethanol-inducible cytochrome P450-2E1 and cytochrome P450 isoforms in exosomes of alcohol-exposed rodents and patients with alcoholism through oxidative and endoplasmic reticulum stress. Hepatol. Commun. 1, 675-690. https://doi.org/10.1002/hep4.1066
  15. Cho, Y. E., Seo, W., Kim, D. K., Moon, P. G., Kim, S. H., Lee, B. H., Song, B. J. and Baek, M. C. (2018) Exogenous exosomes from mice with acetaminophen-induced liver injury promote toxicity in the recipient hepatocytes and mice. Sci. Rep. 8, 16070.
  16. Clayton, A., Court, J., Navabi, H., Adams, M., Mason, M. D., Hobot, J. A., Newman, G. R. and Jasani, B. (2001) Analysis of antigen presenting cell derived exosomes, based on immuno-magnetic isolation and flow cytometry. J. Immunol. Methods 247, 163-174. https://doi.org/10.1016/S0022-1759(00)00321-5
  17. Conde-Vancells, J., Rodriguez-Suarez, E., Embade, N., Gil, D., Matthiesen, R., Valle, M., Elortza, F., Lu, S. C., Mato, J. M. and Falcon-Perez, J. M. (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7, 5157-5166. https://doi.org/10.1021/pr8004887
  18. Devhare, P. B. and Ray, R. B. (2018) Extracellular vesicles: novel mediator for cell to cell communications in liver pathogenesis. Mol. Aspects Med. 60, 115-122. https://doi.org/10.1016/j.mam.2017.11.001
  19. Diaz, G., Bridges, C., Lucas, M., Cheng, Y., Schorey, J. S., Dobos, K. M. and Kruh-Garcia, N. A. (2018) Protein digestion, ultrafiltration, and size exclusion chromatography to optimize the isolation of exosomes from human blood plasma and serum. J. Vis. Exp. (134), 57467.
  20. Ding, M., Wang, C., Lu, X., Zhang, C., Zhou, Z., Chen, X., Zhang, C. Y., Zen, K. and Zhang, C. (2018) Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Anal. Bioanal. Chem. 410, 3805-3814. https://doi.org/10.1007/s00216-018-1052-4
  21. Ding, X. Q., Wang, Z. Y., Xia, D., Wang, R. X., Pan, X. R. and Tong, J. H. (2020) Proteomic profiling of serum exosomes from patients with metastatic gastric cancer. Front. Oncol. 10, 1113.
  22. Doyle, L. M. and Wang, M. Z. (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8, 727.
  23. Eguchi, A., Lazaro, R. G., Wang, J., Kim, J., Povero, D., Willliams, B., Ho, S. B., Starkel, P., Schnabl, B., Ohno-Machado, L., Tsukamoto, H. and Feldstein, A. E. (2017) Extracellular vesicles released by hepatocytes from gastric infusion model of alcoholic liver disease contain a MicroRNA barcode that can be detected in blood. Hepatology 65, 475-490. https://doi.org/10.1002/hep.28838
  24. Garcia-Martinez, I., Alen, R., Rada, P. and Valverde, A. M. (2020) Insights into extracellular vesicles as biomarker of NAFLD pathogenesis. Front. Med. 7, 395.
  25. Garcia-Romero, N., Madurga, R., Rackov, G., Palacin-Aliana, I., Nunez-Torres, R., Asensi-Puig, A., Carrion-Navarro, J., Esteban-Rubio, S., Peinado, H., Gonzalez-Neira, A., Gonzalez-Rumayor, V., Belda-Iniesta, C. and Ayuso-Sacido, A. (2019) Polyethylene glycol improves current methods for circulating extracellular vesicle-derived DNA isolation. J. Transl. Med. 17, 75.
  26. Girard, M., Jacquemin, E., Munnich, A., Lyonnet, S. and Henrion-Caude, A. (2008) miR-122, a paradigm for the role of microRNAs in the liver. J. Hepatol. 48, 648-656. https://doi.org/10.1016/j.jhep.2008.01.019
  27. He, Y., Rodrigues, R. M., Wang, X., Seo, W., Ma, J., Hwang, S., Fu, Y., Trojnar, E., Matyas, C., Zhao, S., Ren, R., Feng, D., Pacher, P., Kunos, G. and Gao, B. (2021) Neutrophil-to-hepatocyte communication via LDLR-dependent miR-223-enriched extracellular vesicle transfer ameliorates nonalcoholic steatohepatitis. J. Clin. Invest. 131, e141513.
  28. Heinemann, M. L. and Vykoukal, J. (2017) Sequential filtration: a gentle method for the isolation of functional extracellular vesicles. Methods Mol. Biol. 1660, 33-41. https://doi.org/10.1007/978-1-4939-7253-1_4
  29. Hemler, M. E. (2005) Tetraspanin functions and associated microdomains. Nat. Rev. Mol. Cell Biol. 6, 801-811. https://doi.org/10.1038/nrm1736
  30. Hirsova, P., Ibrahim, S. H., Krishnan, A., Verma, V. K., Bronk, S. F., Werneburg, N. W., Charlton, M. R., Shah, V. H., Malhi, H. and Gores, G. J. (2016) Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology 150, 956-967. https://doi.org/10.1053/j.gastro.2015.12.037
  31. Holdenrieder, S., Stieber, P., Bodenmuller, H., Busch, M., Von Pawel, J., Schalhorn, A., Nagel, D. and Seidel, D. (2001) Circulating nucleosomes in serum. Ann. N. Y. Acad. Sci. 945, 93-102. https://doi.org/10.1111/j.1749-6632.2001.tb03869.x
  32. Hu, C., Jiang, W., Lv, M., Fan, S., Lu, Y., Wu, Q. and Pi, J. (2022) Potentiality of exosomal proteins as novel cancer biomarkers for liquid biopsy. Front. Immunol. 13, 792046.
  33. Ibrahim, S. H., Hirsova, P., Tomita, K., Bronk, S. F., Werneburg, N. W., Harrison, S. A., Goodfellow, V. S., Malhi, H. and Gores, G. J. (2016) Mixed lineage kinase 3 mediates release of C-X-C motif ligand 10-bearing chemotactic extracellular vesicles from lipotoxic hepatocytes. Hepatology 63, 731-744. https://doi.org/10.1002/hep.28252
  34. Jahr, S., Hentze, H., Englisch, S., Hardt, D., Fackelmayer, F. O., Hesch, R. D. and Knippers, R. (2001) DNA fragments in the blood plasma of cancer patients: quantitations and evidence for their origin from apoptotic and necrotic cells. Cancer Res. 61, 1659-1665.
  35. Kang, H., Kim, J. and Park, J. (2017) Methods to isolate extracellular vesicles for diagnosis. Micro Nano Syst. Lett. 5, 15.
  36. Kastelowitz, N. and Yin, H. (2014) Exosomes and microvesicles: identification and targeting by particle size and lipid chemical probes. ChemBioChem 15, 923-928. https://doi.org/10.1002/cbic.201400043
  37. Keller, S., Rupp, C., Stoeck, A., Runz, S., Fogel, M., Lugert, S., Hager, H-D., Abdel-Bakky, MS., Gutwein, P. and Altevogt, P. (2007) CD24 is a marker of exosomes secreted into urine and amniotic fluid. Kidney Int. 72, 1095-1102. https://doi.org/10.1038/sj.ki.5002486
  38. Keller, S., Sanderson, M. P., Stoeck, A. and Altevogt, P. (2006) Exosomes: from biogenesis and secretion to biological function. Immunol. Lett. 107, 102-108. https://doi.org/10.1016/j.imlet.2006.09.005
  39. Kim, B., Kim, K. H., Chang, Y., Shin, S., Shin, E. C. and Choi, S. (2019) One-step microfluidic purification of white blood cells from whole blood for immunophenotyping. Anal. Chem. 91, 13230-13236. https://doi.org/10.1021/acs.analchem.9b03673
  40. Konoshenko, M. Y., Lekchnov, E. A., Vlassov, A. V. and Laktionov, P. P. (2018) Isolation of extracellular vesicles: general methodologies and latest trends. Biomed Res. Int. 2018, 8545347.
  41. Kuo, W. P. and Jia, S. (2017) Extracellular Vesicles: Methods And Protocols. Springer.
  42. Lawson, C., Vicencio, J. M., Yellon, D. M. and Davidson, S. M. (2016) Microvesicles and exosomes: new players in metabolic and cardiovascular disease. J. Endocrinol. 228, R57-R71. https://doi.org/10.1530/JOE-15-0201
  43. Lee, J. H., Shim, Y. R., Seo, W., Kim, M. H., Choi, W. M., Kim, H. H., Kim, Y. E., Yang, K., Ryu, T., Jeong, J. M., Choi, H. G., Eun, H. S., Kim, S. H., Mun, H., Yoon, J. H. and Jeong, W. I. (2020) Mitochondrial double-stranded RNA in exosome promotes interleukin-17 production through toll-like receptor 3 in alcohol-associated liver injury. Hepatology 72, 609-625. https://doi.org/10.1002/hep.31041
  44. Lee, Y. and Kim, J. H. (2022) The emerging roles of extracellular vesicles as intercellular messengers in liver physiology and pathology. Clin. Mol. Hepatol. 28, 706-724. https://doi.org/10.3350/cmh.2021.0390
  45. Lee, Y. S., Kim, S. Y., Ko, E., Lee, J. H., Yi, H. S., Yoo, Y. J., Je, J., Suh, S. J., Jung, Y. K., Kim, J. H., Seo, Y. S., Yim, H. J., Jeong, W. I., Yeon, J. E., Um, S. H. and Byun, K. S. (2017) Exosomes derived from palmitic acid-treated hepatocytes induce fibrotic activation of hepatic stellate cells. Sci. Rep. 7, 3710.
  46. Lewis, A. P. and Jopling, C. L. (2010) Regulation and biological function of the liver-specific miR-122. Biochem. Soc. Trans. 38, 1553-1557. https://doi.org/10.1042/BST0381553
  47. Li, P., Kaslan, M., Lee, S. H., Yao, J. and Gao, Z. (2017) Progress in exosome isolation techniques. Theranostics 7, 789-804. https://doi.org/10.7150/thno.18133
  48. Liu, X. L., Pan, Q., Cao, H. X., Xin, F. Z., Zhao, Z. H., Yang, R. X., Zeng, J., Zhou, H. and Fan, J. G. (2020) Lipotoxic hepatocyte-derived exosomal microRNA 192-5p activates macrophages through Rictor/Akt/forkhead box transcription factor O1 signaling in nonalcoholic fatty liver disease. Hepatology 72, 454-469. https://doi.org/10.1002/hep.31050
  49. Lobb, R. J., Becker, M., Wen, S. W., Wong, C. S., Wiegmans, A. P., Leimgruber, A. and Moller, A. (2015) Optimized exosome isolation protocol for cell culture supernatant and human plasma. J. Extracell. Vesicles 4, 27031.
  50. Luo, N., Li, J., Dong, R. and Lu, J. (2022) Exosome-based theranostics for liver diseases. Dis. Markers 2022, 7888906.
  51. Luo, X., Xu, Z. X., Wu, J. C., Luo, S. Z. and Xu, M. Y. (2021) Hepatocyt-derived exosomal miR-27a activateshepatic stellate cells through the inhibitionof PINK1-mediated mitophagy in MAFLD. Mol. Ther. Nucleic Acids 26, 1241-1254. https://doi.org/10.1016/j.omtn.2021.10.022
  52. Macias, M., Rebmann, V., Mateos, B., Varo, N., Perez-Gracia, J. L., Alegre, E. and Gonzalez, A. (2019) Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis. Clin. Chem. Lab. Med. 57, 1539-1545. https://doi.org/10.1515/cclm-2018-1297
  53. Malhi, H. (2019) Emerging role of extracellular vesicles in liver diseases. Am. J. Physiol. Gastrointest. Liver Physiol. 317, G739-G749. https://doi.org/10.1152/ajpgi.00183.2019
  54. Malkin, E. Z. and Bratman, S. V. (2020) Bioactive DNA from extracellular vesicles and particles. Cell Death Dis. 11, 584.
  55. Merino, A. M., Hoogduijn, M. J., Borras, F. E. and Franquesa, M. (2014) Therapeutic potential of extracellular vesicles. Front. Immunol SA 5, 658.
  56. Momen-Heravi, F., Bala, S., Kodys, K. and Szabo, G. (2015a) Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Sci. Rep. 5, 9991.
  57. Momen-Heravi, F., Saha, B., Kodys, K., Catalano, D., Satishchandran, A. and Szabo, G. (2015b) Increased number of circulating exosomes and their microRNA cargos are potential novel biomarkers in alcoholic hepatitis. J. Transl. Med. 13, 261.
  58. Munoz-Hernandez, R., Rojas, A., Gato, S., Gallego, J., Gil-Gomez, A., Castro, M. J., Ampuero, J. and Romero-Gomez, M. (2022) Extracellular vesicles as biomarkers in liver disease. Int. J. Mol. Sci. 23, 16217.
  59. Onodi, Z., Pelyhe, C., Terezia Nagy, C., Brenner, G. B., Almasi, L., Kittel, A., Mancek-Keber, M., Ferdinandy, P., Buzas, E. I. and Giricz, Z. (2018) Isolation of high-purity extracellular vesicles by the combination of iodixanol density gradient ultracentrifugation and bindelute chromatography from blood plasma. Front. Physiol. 9, 1479.
  60. Osna, N. A., Eguchi, A., Feldstein, A. E., Tsukamoto, H., Dagur, R. S., Ganesan, M., New-Aaron, M., Arumugam, M. K., Chava, S., Ribeiro, M., Szabo, G., Mueller, S., Wang, S., Chen, C., Weinman, S. A. and Kharbanda, K. K. (2022) Cell-to-cell communications in alcohol-associated liver disease. Front. Physiol. 13, 831004.
  61. Othman, N., Jamal, R. and Abu, N. (2019) Cancer-derived exosomes as effectors of key inflammation-related players. Front. Immunol. 10, 2103.
  62. Pardini, B., Sabo, A. A., Birolo, G. and Calin, G. A. (2019) Noncoding RNAs in extracellular fluids as cancer biomarkers: the new frontier of liquid biopsies. Cancers (Basel) 11, 1170.
  63. Patel, G. K., Khan, M. A., Zubair, H., Srivastava, S. K., Khushman, M., Singh, S. and Singh, A. P. (2019) Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Sci. Rep. 9, 5335.
  64. Pirola, C. J., Fernandez Gianotti, T., Castano, G. O., Mallardi, P., San Martino, J., Mora Gonzalez Lopez Ledesma, M., Flichman, D., Mirshahi, F., Sanyal, A. J. and Sookoian, S. (2015) Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut 64, 800-812. https://doi.org/10.1136/gutjnl-2014-306996
  65. Popovic, M. and de Marco, A. (2018) Canonical and selective approaches in exosome purification and their implications for diagnostic accuracy. Transl. Cancer Res. 7, S209-S225. https://doi.org/10.21037/tcr.2017.08.44
  66. Povero, D., Eguchi, A., Niesman, I. R., Andronikou, N., de Mollerat du Jeu, X., Mulya, A., Berk, M., Lazic, M., Thapaliya, S., Parola, M., Patel, H. H. and Feldstein, A. E. (2013) Lipid-induced toxicity stimulates hepatocytes to release angiogenic microparticles that require Vanin-1 for uptake by endothelial cells. Sci. Signal. 6, ra88.
  67. Povero, D., Panera, N., Eguchi, A., Johnson, C. D., Papouchado, B. G., de Araujo Horcel, L., Pinatel, E. M., Alisi, A., Nobili, V. and Feldstein, A. E. (2015) Lipid-induced hepatocyte-derived extracellular vesicles regulate hepatic stellate cell via microRNAs targeting PPAR-gamma. Cell. Mol. Gastroenterol. Hepatol. 1, 646-663. https://doi.org/10.1016/j.jcmgh.2015.07.007
  68. Rada, P., Gonzalez-Rodriguez, A., Garcia-Monzon, C. and Valverde, A. M. (2020) Understanding lipotoxicity in NAFLD pathogenesis: is CD36 a key driver? Cell Death Dis. 11, 802.
  69. Raposo, G., Nijman, H. W., Stoorvogel, W., Liejendekker, R., Harding, C. V., Melief, C. J. and Geuze, H. J. (1996) B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183, 1161-1172. https://doi.org/10.1084/jem.183.3.1161
  70. Raposo, G. and Stoorvogel, W. (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200, 373-383. https://doi.org/10.1083/jcb.201211138
  71. Rider, M. A., Hurwitz, S. N. and Meckes, D. G., Jr. (2016) ExtraPEG: a polyethylene glycol-based method for enrichment of extracellular vesicles. Sci. Rep. 6, 23978.
  72. Ruivo, C. F., Adem, B., Silva, M. and Melo, S. A. (2017) The biology of cancer exosomes: insights and new perspectives. Cancer Res. 77, 6480-6488. https://doi.org/10.1158/0008-5472.CAN-17-0994
  73. Saha, B., Momen-Heravi, F., Furi, I., Kodys, K., Catalano, D., Gangopadhyay, A., Haraszti, R., Satishchandran, A., Iracheta-Vellve, A., Adejumo, A., Shaffer, S. A. and Szabo, G. (2018) Extracellular vesicles from mice with alcoholic liver disease carry a distinct protein cargo and induce macrophage activation through heat shock protein 90. Hepatology 67, 1986-2000. https://doi.org/10.1002/hep.29732
  74. Saha, B., Momen-Heravi, F., Kodys, K. and Szabo, G. (2016) MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J. Biol. Chem. 291, 149-159. https://doi.org/10.1074/jbc.M115.694133
  75. Schwartz, L. and Seeley, K. (2014) Introduction to Tangential Flow Filtration for Laboratory and Process Development Applications. Pall Corporation. Available from: (https://www.pall.com/)
  76. Seo, W., Eun, H. S., Kim, S. Y., Yi, H. S., Lee, Y. S., Park, S. H., Jang, M. J., Jo, E., Kim, S. C., Han, Y. M., Park, K. G. and Jeong, W. I. (2016) Exosome-mediated activation of toll-like receptor 3 in stellate cells stimulates interleukin-17 production by gammadelta T cells in liver fibrosis. Hepatology 64, 616-631. https://doi.org/10.1002/hep.28644
  77. Seo, W., Gao, Y., He, Y., Sun, J., Xu, H., Feng, D., Park, S. H., Cho, Y. E., Guillot, A., Ren, T., Wu, R., Wang, J., Kim, S. J., Hwang, S., Liangpunsakul, S., Yang, Y., Niu, J. and Gao, B. (2019) ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J. Hepatol. 71, 1000-1011. https://doi.org/10.1016/j.jhep.2019.06.018
  78. Shtam, T. A., Samsonov, R. B., Volnitskiy, A. V., Kamyshinsky, R. A., Verlov, N. A., Kniazeva, M. S., Korobkina, E. A., Orehov, A. S., Vasiliev, A. L. and Konevega, A. L. (2018) Isolation of extracellular microvesicles from cell culture medium: comparative evaluation of methods. Biochem. Moscow Suppl. Ser. B 12, 167-175. https://doi.org/10.1134/S1990750818020117
  79. Sidhom, K., Obi, P. O. and Saleem, A. (2020) A review of exosomal isolation methods: is size exclusion chromatography the best option? Int. J. Mol. Sci. 21, 6466.
  80. Smolarz, M., Pietrowska, M., Matysiak, N., Mielanczyk, L. and Widlak, P. (2019) Proteome profiling of exosomes purified from a small amount of human serum: the problem of co-purified serum components. Proteomes 7, 18.
  81. Stam, J., Bartel, S., Bischoff, R. and Wolters, J. C. (2021) Isolation of extracellular vesicles with combined enrichment methods. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 1169, 122604.
  82. Szatanek, R., Baran, J., Siedlar, M. and Baj-Krzyworzeka, M. (2015) Isolation of extracellular vesicles: determining the correct approach (review). Int. J. Mol. Med. 36, 11-17. https://doi.org/10.3892/ijmm.2015.2194
  83. Takahashi, A., Okada, R., Nagao, K., Kawamata, Y., Hanyu, A., Yoshimoto, S., Takasugi, M., Watanabe, S., Kanemaki, M. T., Obuse, C. and Hara, E. (2017) Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat. Commun. 8, 15287.
  84. Taylor, D. D. and Shah, S. (2015) Methods of isolating extracellular vesicles impact down-stream analyses of their cargoes. Methods 87, 3-10. https://doi.org/10.1016/j.ymeth.2015.02.019
  85. Thery, C., et al. (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 7, 1535750.
  86. Todorova, D., Simoncini, S., Lacroix, R., Sabatier, F. and Dignat-George, F. (2017) Extracellular vesicles in angiogenesis. Circ. Res. 120, 1658-1673. https://doi.org/10.1161/CIRCRESAHA.117.309681
  87. Tran, P. H. L., Wang, T., Yin, W., Tran, T. T. D., Barua, H. T., Zhang, Y., Midge, S. B., Nguyen, T. N. G., Lee, B. J. and Duan, W. (2019) Development of a nanoamorphous exosomal delivery system as an effective biological platform for improved encapsulation of hydrophobic drugs. Int. J. Pharm. 566, 697-707. https://doi.org/10.1016/j.ijpharm.2019.06.028
  88. Tricarico, C., Clancy, J. and D'Souza-Schorey, C. (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8, 220-232. https://doi.org/10.1080/21541248.2016.1215283
  89. Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J. J. and Lotvall, J. O. (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654-659. https://doi.org/10.1038/ncb1596
  90. van der Goot, F. G. and Gruenberg, J. (2006) Intra-endosomal membrane traffic. Trends Cell Biol. 16, 514-521. https://doi.org/10.1016/j.tcb.2006.08.003
  91. Verma, V. K., Li, H., Wang, R., Hirsova, P., Mushref, M., Liu, Y., Cao, S., Contreras, P. C., Malhi, H., Kamath, P. S., Gores, G. J. and Shah, V. H. (2016) Alcohol stimulates macrophage activation through caspase-dependent hepatocyte derived release of CD40L containing extracellular vesicles. J. Hepatol. 64, 651-660. https://doi.org/10.1016/j.jhep.2015.11.020
  92. Vlassov, A. V., Magdaleno, S., Setterquist, R. and Conrad, R. (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim. Biophys. Acta, Gen. Subj. 1820, 940-948. https://doi.org/10.1016/j.bbagen.2012.03.017
  93. Webber, J. and Clayton, A. (2013) How pure are your vesicles? J. Extracell. Vesicles 2, 19861.
  94. Wei, D., Zhan, W., Gao, Y., Huang, L., Gong, R., Wang, W., Zhang, R., Wu, Y., Gao, S. and Kang, T. (2021) RAB31 marks and controls an ESCRT-independent exosome pathway. Cell Res. 31, 157-177. https://doi.org/10.1038/s41422-020-00409-1
  95. Witwer, K. W. and Thery, C. (2019) Extracellular vesicles or exosomes? On primacy, precision, and popularity influencing a choice of nomenclature. J. Extracell. Vesicles 8, 1648167.
  96. Xie, S., Zhang, Q. and Jiang, L. (2022) Current knowledge on exosome biogenesis, cargo-sorting mechanism and therapeutic implications. Membranes (Basel) 12, 498.
  97. Xie, X., Bahnemann, J., Wang, S., Yang, Y. and Hoffmann, M. R. (2016) "Nanofiltration" enabled by super-absorbent polymer beads for concentrating microorganisms in water samples. Sci. Rep. 6, 20516.
  98. Yang, D., Zhang, W., Zhang, H., Zhang, F., Chen, L., Ma, L., Larcher, L. M., Chen, S., Liu, N., Zhao, Q., Tran, P. H. L., Chen, C., Veedu, R. N. and Wang, T. (2020) Progress, opportunity, and perspective on exosome isolation - efforts for efficient exosome-based theranostics. Theranostics 10, 3684-3707. https://doi.org/10.7150/thno.41580
  99. Yang, H. C., Ham, Y. M., Kim, J. A. and Rhee, W. J. (2021) Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J. Extracell. Vesicles 10, e12074.
  100. Yu, D., Li, Y., Wang, M., Gu, J., Xu, W., Cai, H., Fang, X. and Zhang, X. (2022) Exosomes as a new frontier of cancer liquid biopsy. Mol. Cancer 21, 56.
  101. Yu, L. L., Zhu, J., Liu, J. X., Jiang, F., Ni, W. K., Qu, L. S., Ni, R. Z., Lu, C. H. and Xiao, M. B. (2018) A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res. Int. 2018, 3634563.
  102. Zara, M., Guidetti, G. F., Camera, M., Canobbio, I., Amadio, P., Torti, M., Tremoli, E. and Barbieri, S. S. (2019) Biology and role of extracellular vesicles (EVs) in the pathogenesis of thrombosis. Int. J. Mol. Sci. 20, 2840.
  103. Zhang, J., Tan, J., Wang, M., Wang, Y., Dong, M., Ma, X., Sun, B., Liu, S., Zhao, Z., Chen, L., Liu, K., Xin, Y. and Zhuang, L. (2021) Lipid-induced DRAM recruits STOM to lysosomes and induces LMP to promote exosome release from hepatocytes in NAFLD. Sci. Adv. 7, eabh1541.
  104. Zhang, Y., Liu, Y., Liu, H. and Tang, W. H. (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci. 9, 19.
  105. Zhao, T., Sun, F., Liu, J., Ding, T., She, J., Mao, F., Xu, W., Qian, H. and Yan, Y. (2019) Emerging role of mesenchymal stem cell-derived exosomes in regenerative medicine. Curr. Stem Cell Res. Ther. 14, 482-494. https://doi.org/10.2174/1574888X14666190228103230