• Title/Summary/Keyword: mitochondria lipids

Search Result 16, Processing Time 0.02 seconds

Enhancement of Cyclosporine-Induced Oxidative Damage of Kidney Mitochondria by Iron

  • Jang, Yoon-Young;Han, Eun-Sook;Lee, Chung-Soo;Kim, Young-Ki;Song, Jin-Ho;Shin, Yong-Kyoo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.6
    • /
    • pp.631-640
    • /
    • 1999
  • The present study investigated the stimulatory effects of iron (or ascorbate) on cyclosporine-induced kidney mitochondrial damage. Damaging effect of $50\;{\mu}M$ cyclosporine plus $20\;{\mu}M\;Fe^{2+}$ on mitochondrial lipids and proteins of rat kidney and hyaluronic acid was greater than the summation of oxidizing action of each compound alone, except sulfhydryl oxidation. Cyclosporine and $100\;{\mu}M$ ascorbate showed an enhanced damaging effect on lipids but not on proteins. The peroxidative action of cyclosporine on lipids was enhanced with increasing concentrations of $Fe^{2+}.$ Ferric ion $(20\;{\mu}M)$ also interacted with cyclosporine to stimulate lipid peroxidation. Damaging action of cyclosporine on mitochondrial lipids was enhanced by ascorbate $(100\;{\mu}M\;and\;1\;mM)$. Iron chelators, DTPA and EDTA, attenuated carbonyl formation induced by cyclosporine plus ascorbate. Cyclosporine $(100\;{\mu}M)$ and $50\;{\mu}M\;Fe^{2+}$ $(or\;100\;{\mu}M\;ascorbate)$ synergistically stimulated degradation of $2-{\alpha}$ deoxyribose. Cyclosporine $(1\;to\;100\;{\mu}M)$ reduced ferric ion in a dose dependent manner, which is much less than ascorbate action. Addition of $Fe^{2+}$ caused a change in absorbance spectrum of cyclosporine in $230{\sim}350$ nm of wavelengths. The results show that cyclosporine plus iron (or ascorbate) exerts an enhanced damaging effect on kidney mitochondria. Iron and ascorbate appear to promote the nephrotoxicity induced by cyclosporine.

  • PDF

A Ultrastructural Study on the Axoneme Formation in the Spermatozoa of the Edible Giant Snail, Achatina fulica (식용 왕달팽이 (Achatina fulica) 정자의 축사형성 (Axoneme formation)에 관한 미세구조)

  • Chang, Nam-Sub
    • Applied Microscopy
    • /
    • v.28 no.4
    • /
    • pp.513-525
    • /
    • 1998
  • The spermatogenetic process in the edible giant snail is similar to those in the other snails, except for the axoneme formation process. In this study, the axoneme formation process in the giant snail was mainly examined by means of electron microscopy. The tail portion of a spermatozoon is about $160{\mu}m$ long, and extends straight to the rear, surrounded by two large and long mitochondria in spiral forms. A number of glycogen particles $(40\sim70nm)$ are found in the swollen matrix of the mitochodria. The axoneme which composes the tail of a spermatozoon is surrounded by $7\sim10$ lamella-form fibrous sheaths of about $0.2{\mu}m$ in thickness. Most of the mature spermatozoa are found to be clustered into a group of $5\sim7$ ea in syncytial bridges formed by cytoplasmic processes. Sertoli cells contain glycogen particles, endoplasmic reticulum, a lot of mitochondria, and lipids in their cytoplasm. They protrude their filiform pseudopodia and phagocytize abnormal spermatids or spermaozoa.

  • PDF

Effects of glycyrrhizinic acid, menthol and GA: Mt (2: 1), GA: Mt (4: 1) and GA: Mt (9: 1) supramolecular compounds on mitochondrial functional activity IN VITRO experiments.

  • L. A., Еttibaeva;U. K., Abdurahmonova;A.D., Matchanov;S., Karshiboev
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.137-144
    • /
    • 2022
  • This paper presents the effect of the supramolecular complex of GA (Glycyrrhizic acid) and Mt(menthol) and GA: Mt (4: 1) obtained on their basis can restore functional dysfunction of the liver mitochondria in alloxan diabetes, ie, inhibit lipid peroxidation. The hypoglycemic activity and mitochondrial membrane stabilizing properties of the supramolecular compound GA: Mt (4: 1) in alloxan diabetes were more pronounced than those of menthol, GA and its GK: Mt (2: 1) and GA: Mt (9: 1) compounds. According to the results obtained, the concentration of GA did not affect the peroxidation of lipid membranes of the liver mitochondria. However, a concentration of 15 μM of GA was found to reduce LPO (lipid peroxidation) formed by the effect of Fe2+ / ascorbate on the mitochondrial membrane by 58.0 ± 5.0% relative to control. The inhibitory effect of GA and its supramolecular compounds in different proportions with menthol on the peroxidation of lipids in rat heart and brain tissue has been studied

CGI-58 Protein Acts as a Positive Regulator of Triacylglycerol Accumulation in Phaeodactylum tricornutum

  • Qin Shu;Yufang Pan;Hanhua Hu
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.242-250
    • /
    • 2023
  • Comparative gene identification-58 (CGI-58) is an activating protein of triacylglycerol (TAG) lipase. It has a variety of catalytic activities whereby it may play different roles in diverse organisms. In this study, a homolog of CGI-58 in Phaeodactylum tricornutum (PtCGI-58) was identified. PtCGI-58 was localized in mitochondria by GFP fusion protein analysis, which is different from the reported subcellular localization of CGI-58 in animals and plants. Respectively, PtCGI-58 overexpression resulted in increased neutral lipid content and TAG accumulation by 42-46% and 21-32%. Likewise, it also increased the relative content of eicosapentaenoic acid (EPA), and in particular, the EPA content in TAGs almost doubled. Transcript levels of genes involved in de novo fatty acid synthesis and mitochondrial β-oxidation were significantly upregulated in PtCGI-58 overexpression strains compared with wild-type cells. Our findings suggest that PtCGI-58 may mediate the breakdown of lipids in mitochondria and the recycling of acyl chains derived from mitochondrial β-oxidation into TAG biosynthesis. Moreover, this study potentially illuminates new functions for CGI-58 in lipid homeostasis and provides a strategy to enrich EPA in algal TAGs.

Effect of Ginseng Saponin on Alcohol Metabolism in the Animal Body (인삼사포닌이 동물생체의 주정대사에 미치는 영향)

  • Joo, Chung-No
    • Journal of Ginseng Research
    • /
    • v.16 no.3
    • /
    • pp.222-227
    • /
    • 1992
  • Unlike carbohydrats and fats, alcohol is essentially foreign to the body and it is known that the body get rid of it by oxidizing alcohol maily in the liver. Acetaldehyde is produced during ethanol metabolism and is known to be oxidized mainly by aldehyde dehydrogenase (ALDH). ALDH activity was found mainly in the mitochondrial fraction but a significant ALDH activity was also present in microsomal and cytosol fraction. Wistar rats (150~200 g, male) were given freely with 12% ethanol (Control) and/or 12% ethanol containing 0.1% ginseng saponins (Test) instead of water for 6 days and the liver was analyzed. ALDH activities of both control and test group were lower than that of normal group but test AkDH was less inhibited than control. ADH activies of both control and test were slightly higher than that of normal group but our previous data showed that it became gradually steady after prolonged ethanol feeding. MEOS activities of both control and test group were much higher than that of normal group. MEOS enzymes are inducible but the activity of test group was greatly higher than that of control. Ethanol containing [1-i4C] ethanol (5 $\mu$Ci) was injected to the above three groups and 30 min later, the distribution of radioactivity of hepatic lipids was investigated. Radioactivities of hepatic lipids of both control and test group were higher than that of normal group, however, that of test group was much lower than that of control. Analysis of individual lipids showed that phospholipid biosynthesis was significantly impaired and fatty acid and triglycerides biosynthesis were greatly stimulated. However, it was realized that the saponin prevented phospholipid biosynthesis depression and the increase of triglyceride biosynthesis considerably. It seemed that the saponin might stimulate ADH, ALDH and MEOS and the acetaldehyde formed would be removed faster. The excess hydrogen can be shunt more quickly into lipid biosynthesis. Electron microscopic observation showed that the hepatic cell of control group was si gnificantly damaged. Mitochondria were swollen and rough endoplasmic reticulum were dilated, however, hepatocytes of test group were not damaged.

  • PDF

A novel approach for dietary regulation of macrophages through mitochondrial energy metabolism (식품을 이용한 대식세포 에너지 대사 조절)

  • Yu, Seungmin;Kim, Wooki
    • Food Science and Industry
    • /
    • v.55 no.3
    • /
    • pp.264-275
    • /
    • 2022
  • The regulation of macrophages is a major target for dietary immune modulation for their involvement in both innate and adoptive immune responses. Studies revealed that macrophages are unique in their plasticity to polarize into either inflammatory M1 subset or anti-inflammatory M2 cells. Recently, cellular energy metabolism including both glycolysis and oxidative phosphorylation is demonstrated to control macrophage dichotomy. In this review, the differential utilization of glucose, lipids, amino acids, and irons by M1 and M2 cells are discussed in detail. In addition, several dietary approaches for the alteration of inflammatory M1 cells to M2 phenotypes are reviewed for development of functional foods for immune regulation.

Effects of L-Carnitine during the Storage of Fresh Semen in Miniature Pigs

  • Lee, Yeon-Ju;Lee, Sang-Hee;Lee, Eunsong;Lee, Seung Tae;Cheong, Hee-Tae;Yang, Boo-Keun;Lee, Seunghyung;Park, Choon-Keun
    • Reproductive and Developmental Biology
    • /
    • v.38 no.4
    • /
    • pp.171-177
    • /
    • 2014
  • L-Carnitine is an antioxidant for the transport of fatty acids in mitochondria and breakdown of lipids for metabolic energy. Some studies have suggested that carnitine improves sperm motility in mammals. The objective of this study was to investigate the effect of L-carnitine on the characteristics in fresh semen of miniature pigs. The collected fresh semen was stored in modena B medium with L-carnitine (0, 1.0, 2.0, and 4.0 mg/ml) for 10 days at $18^{\circ}C$. The semen quality of viability, acrosome reaction and mitochondria integrity was analyzed on 0, 3, 7, and 10 day of semen storage. The percentages of live and dying sperm were not different among treatment groups with different concentrations of L-carnitine during the storage period. In acrosome reaction analysis, when the sperm stored for 7 day, the percentages of live sperm with acrosome reaction were significantly (p<0.05) lower in 1 ($9.0{\pm}0.9%$), 2 ($7.6{\pm}0.2%$) or 4 mg/ml ($7.9{\pm}0.8%$) L-carnitine-treated groups than the control group (0 mg/ml L-carnitine) ($11.12{\pm}0.2%$). However, there were no difference in percentages of live sperm with acrosome reaction for 3 and 10 days of storage with each concentrations of L-carnitine. When sperm was stored for 3 and 10 days, the percentages of live sperm with mitochondria integrity were significantly higher in 2 mg/ml of L-carnitine-treated group than control group (p<0.05). In conclusion, the L-carnitine has a positive effect on acrosome reaction and mitochondria integrity in liquid state of fresh semen in miniature pigs.

Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions

  • Kwon, Young-Yon;Choi, Kyung-Mi;Cho, ChangYeon;Lee, Cheol-Koo
    • Molecules and Cells
    • /
    • v.38 no.12
    • /
    • pp.1054-1063
    • /
    • 2015
  • Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 ($sdh1{\Delta}$, $sdh2{\Delta}$, $sdh4{\Delta}$, $cor1{\Delta}$, $cyt1{\Delta}$, $qcr7{\Delta}$, $qcr8{\Delta}$, $rip1{\Delta}$, $cox6{\Delta}$, $cox7{\Delta}$, $cox9{\Delta}$, $atp4{\Delta}$, $atp7{\Delta}$, and $atp17{\Delta}$) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-$F_1F_0$-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.

Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp.

  • Han, Mi-Ae;Hong, Seong-Joo;Kim, Z-Hun;Cho, Byung-Kwan;Lee, Hookeun;Choi, Hyung-Kyoon;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.267-274
    • /
    • 2018
  • Lipids in microalgae are energy-rich compounds and considered as an attractive feedstock for biodiesel production. To redirect carbon flux from competing pathways to the fatty acid synthesis pathway of Tetraselmis sp., we used three types of chemical inhibitors that can block the starch synthesis pathway or photorespiration, under nitrogen-sufficient and nitrogen-deficient conditions. The starch synthesis pathway in chloroplasts and the cytosol can be inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 1,2-cyclohexane diamine tetraacetic acid (CDTA), respectively. Degradation of glycine into ammonia during photorespiration was blocked by aminooxyacetate (AOA) to maintain biomass concentration. Inhibition of starch synthesis pathways in the cytosol by CDTA increased fatty acid productivity by 27% under nitrogen deficiency, whereas the blocking of photorespiration in mitochondria by AOA was increased by 35% under nitrogen-sufficient conditions. The results of this study indicate that blocking starch or photorespiration pathways may redirect the carbon flux to fatty acid synthesis.