Browse > Article
http://dx.doi.org/10.4014/jmb.1702.02064

Enhanced Production of Fatty Acids via Redirection of Carbon Flux in Marine Microalga Tetraselmis sp.  

Han, Mi-Ae (Marine Bioenergy R&D Center, Department of Biological Engineering, Inha University)
Hong, Seong-Joo (Marine Bioenergy R&D Center, Department of Biological Engineering, Inha University)
Kim, Z-Hun (Culture Techniques Research Division, Nakdonggang National Institute of Biological Resources)
Cho, Byung-Kwan (Department of Biological Sciences, Korea Advanced Institute of Science and Technology)
Lee, Hookeun (Institute of Pharmaceutical Research, College of Pharmacy, Gachon University)
Choi, Hyung-Kyoon (College of Pharmacy, Chung-Ang University)
Lee, Choul-Gyun (Marine Bioenergy R&D Center, Department of Biological Engineering, Inha University)
Publication Information
Journal of Microbiology and Biotechnology / v.28, no.2, 2018 , pp. 267-274 More about this Journal
Abstract
Lipids in microalgae are energy-rich compounds and considered as an attractive feedstock for biodiesel production. To redirect carbon flux from competing pathways to the fatty acid synthesis pathway of Tetraselmis sp., we used three types of chemical inhibitors that can block the starch synthesis pathway or photorespiration, under nitrogen-sufficient and nitrogen-deficient conditions. The starch synthesis pathway in chloroplasts and the cytosol can be inhibited by 3-(3,4-dichlorophenyl)-1,1-dimethylurea and 1,2-cyclohexane diamine tetraacetic acid (CDTA), respectively. Degradation of glycine into ammonia during photorespiration was blocked by aminooxyacetate (AOA) to maintain biomass concentration. Inhibition of starch synthesis pathways in the cytosol by CDTA increased fatty acid productivity by 27% under nitrogen deficiency, whereas the blocking of photorespiration in mitochondria by AOA was increased by 35% under nitrogen-sufficient conditions. The results of this study indicate that blocking starch or photorespiration pathways may redirect the carbon flux to fatty acid synthesis.
Keywords
Tetraselmis sp.; fatty acids; carbohydrates; nitrogen starvation; chemical inhibitors;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Kim ZH, Park H, Lee CG. 2016. Seasonal assessment of biomass and fatty acid productivity by Tetraselmis sp. in the ocean using semi-permeable membrane photobioreactors. J. Microbiol. Biotechnol. 26: 1098-1102.   DOI
2 Lee HS, Kim ZH, Park H, Lee CG. 2016. Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris. Bioprocess. Biosyst. Eng. 39: 815-823.   DOI
3 Kim ZH, Park H, Ryu YJ, Shin DW, Hong SJ, Tran HL, et al. 2015. Algal biomass and biodiesel production by utilizing the nutrients dissolved in seawater using semi-permeable membrane photobioreactors. J. Appl. Phycol. 27: 1763-1773.
4 Lee HS, Seo MW, Kim ZH, Lee CG. 2006. Determining the best specific light uptake rates for the lumostatic cultures in bubble column photobioreactors. Enzyme Microb. Technol. 39: 447-452.   DOI
5 Dubois M, Gilles KA, Hamilton JK, Rebers P, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356.
6 Lloyd ND, Canvin DT, Culver DA. 1977. Photosynthesis and photorespiration in algae. Plant Physiol. 59: 936-940.   DOI
7 Servaites JC, Ogren WL. 1977. Chemical inhibition of the glycolate pathway in soybean leaf cells. Plant Physiol. 60: 461-466.   DOI
8 Liu W, Peterson PE, Carter RJ, Zhou X, Langston JA, Fisher AJ, et al. 2004. Crystal structures of unbound and aminooxyacetatebound Escherichia coli ${\gamma}$-aminobutyrate aminotransferase. Biochemistry 43: 10896-10905.   DOI
9 Schiff JA, Zeldin MH, Rubman J. 1967. Chlorophyll formation and photosynthetic competence in Euglena during lightinduced chloroplast development in the presence of 3,(3,4-dichlorophenyl) 1,1-dimethyl urea (DCMU). Plant Physiol. 42: 1716-1725.   DOI
10 Wang ST, Pan Y-Y, Liu CC, Chuang LT, Chen CNN. 2011. Characterization of a green microalga UTEX 2219-4: effects of photosynthesis and osmotic stress on oil body formation. Bot. Stud. 52: 305-312.
11 Buchanan BB. 1980. Role of light in the regulation of chloroplast enzymes. Annu. Rev. Plant Physiol. 31: 341-374.   DOI
12 Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U. 2009. Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot. Cell 8: 1856-1868.   DOI
13 Rismani-Yazdi H, Haznedaroglu BZ, Hsin C, Peccia J. 2012. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation. Biotechnol. Biofuels 5: 1.   DOI
14 Goncalves EC, Wilkie AC, Kirst M, Rathinasabapathi B. 2016. Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnol. J. 14: 1649-1660.   DOI
15 Khozin-Goldberg I, Cohen Z. 2006. The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus subterraneus. Phytochemistry 67: 696-701.   DOI
16 Mata TM, Martins AA, Caetano NS. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14: 217-232.   DOI
17 Prochazkova G, Branyikova I, Zachleder V, Branyik T. 2014. Effect of nutrient supply status on biomass composition of eukaryotic green microalgae. J. Appl. Phycol. 26: 1359-1377.   DOI
18 Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48: 1146-1151.   DOI
19 Ho SH, Chen CY, Chang JS. 2012. Effect of light intensity and nitrogen starvation on $CO_2$ fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113: 244-252.   DOI
20 Jiang Y, Yoshida T, Quigg A. 2012. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae. Plant Physiol. Biochem. 54: 70-77.   DOI
21 Xin L, Hu HY, Ke G, Sun YX. 2010. Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresour. Technol. 101: 5494-5500.   DOI
22 Sheehan J, Dunahay T, Benemann J, Roessler P. 1998. Look back at the US department of energy's aquatic species program: biodiesel from algae. National Renewable Energy Laboratory, Golden, CO, USA.
23 Klein U. 1987. Intracellular carbon partitioning in Chlamydomonas reinhardtii. Plant Physiol. 85: 892-897.   DOI
24 Li Y, Han D, Hu G, Dauvillee D, Sommerfeld M, Ball S, Hu Q. 2010. Chlamydomonas starchless mutant defective in ADPglucose pyrophosphorylase hyper-accumulates triacylglycerol. Metab. Eng. 12: 387-391.
25 Daboussi F, Leduc S, Marechal A, Dubois G, Guyot V, Perez-Michaut C, et al. 2014. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5: 3831.   DOI
26 Iglesias AA, Charng Y, Ball S, Preiss J. 1994. Characterization of the kinetic, regulatory, and structural properties of ADPglucose pyrophosphorylase from Chlamydomonas reinhardtii. Plant Physiol. 104: 1287-1294.   DOI
27 Recht L, Zarka A, Boussiba S. 2012. Patterns of carbohydrate and fatty acid changes under nitrogen starvation in the microalgae Haematococcus pluvialis and Nannochloropsis sp. Appl. Microbiol. Biotechnol. 94: 1495-1503.   DOI
28 Gonen-Zurgil Y, Carmeli-Schwartz Y, Sukenik A. 1996. Selective effect of the herbicide DCMU on unicellular algae - a potential tool to maintain monoalgal mass culture of Nannochloropsis. J. Appl. Phycol. 8: 415-419.   DOI
29 Brearley CA, Hanke DE. 1993. Pathway of synthesis of 3,4-and 4,5-phosphorylated phosphatidylinositols in the duckweed Spirodela polyrhiza. L. Biochem. J. 290: 145-150.   DOI
30 Bloom AJ. 2015. Photorespiration and nitrate assimilation: a major intersection between plant carbon and nitrogen. Photosynth. Res. 123: 117-128.   DOI
31 Turpin DH, Elrifi IR, Birch DG, Weger HG, Holmes JJ. 1988. Interactions between photosynthesis, respiration, and nitrogen assimilation in microalgae. Can. J. Bot. 66: 2083-2097.   DOI
32 Rosenberg JN, Oyler GA, Wilkinson L, Betenbaugh MJ. 2008. A green light for engineered algae: redirecting metabolism to fuel a biotechnology revolution. Curr. Opin. Biotechnol. 19: 430-436.   DOI
33 Munoz FJ, Baroja-Fernandez E, Moran-Zorzano MT, Viale AM, Etxeberria E, Alonso-Casajus N, et al. 2005. Sucrose synthase controls both intracellular ADP glucose levels and transitory starch biosynthesis in source leaves. Plant Cell Physiol. 46: 1366-1376.   DOI
34 Liang MH, Jiang JG. 2013. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog. Lipid Res. 52: 395-408.   DOI
35 Sayre R. 2010. Microalgae: the potential for carbon capture. Bioscience 60: 722-727.   DOI
36 Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. 2013. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae. Bioresour. Technol. 131: 188-194.   DOI
37 Gimpel JA, Specht EA, Georgianna DR, Mayfield SP. 2013. Advances in microalgae engineering and synthetic biology applications for biofuel production. Curr. Opin. Chem. Biol. 17: 489-495.
38 Sirikhachornkit A, Vuttipongchaikij S, Suttangkakul A, Yokthongwattana K, Juntawong P, Pokethitiyook P, et al. 2016. Increasing the triacylglycerol content in Dunaliella tertiolecta through isolation of starch-deficient mutants. J. Microbiol. Biotechnol. 26: 854-866.   DOI
39 Chen CY, Zhao XQ, Yen HW, Ho SH, Cheng CL, Lee DJ, et al. 2013. Microalgae-based carbohydrates for biofuel production. Biochem. Eng. J. 78: 1-10.   DOI
40 Kuchitsu K, Tsuzuki M, Miyachi S. 1988. Changes of starch localization within the chloroplast induced by changes in $CO_2$ concentration during growth of Chlamydomonas reinhardtii: independent regulation of pyrenoid starch and stroma starch. Plant Cell Physiol. 29: 1269-1278.
41 Roeben A, Plitzko JM, Korner R, Bottcher UM, Siegers K, Hayer-Hartl M, et al. 2006. Structural basis for subunit assembly in UDP-glucose pyrophosphorylase from Saccharomyces cerevisiae. J. Mol. Biol. 364: 551-560.   DOI
42 Kleczkowski LA, Randall DD, Blevins DG. 1987. Inhibition of spinach leaf NADPH (NADH)-glyoxylate reductase by acetohydroxamate, aminooxyacetate, and glycidate. Plant Physiol. 84: 619-623.
43 Msanne J, Xu D, Konda AR, Casas-Mollano JA, Awada T, Cahoon EB, et al. 2012. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169. Phytochemistry 75: 50-59.   DOI
44 Villarejo A, Martinez F, Ramazanov Z. 1997. Effect of aminooxyacetate, an inhibitor blocking the glycolate pathway, on the induction of a $CO_2$-concentrating mechanism and low-$CO_2$-inducible polypeptides in Chlamydomonas reinhardtii (Chlorophyta). Eur. J. Phycol. 32: 141-145.   DOI
45 Thompson GA. 1996. Lipids and membrane function in green algae. Biochim. Biophys. Acta 1302: 17-45.   DOI
46 Zhan J, Hu H. 2016. Effects of nitrogen sources and C/N ratios on the lipid-producing potential of Chlorella sp. HQ. J. Microbiol. Biotechnol. 26: 1290-1302.   DOI
47 Bondioli P, Della Bella L, Rivolta G, Zittelli GC, Bassi N, Rodolfi L, et al. 2012. Oil production by the marine microalgae Nannochloropsis sp. F&M-M24 and Tetraselmis suecica F&M-M33. Bioresour. Technol. 114: 567-572.