Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0153

Mitochondrial Efficiency-Dependent Viability of Saccharomyces cerevisiae Mutants Carrying Individual Electron Transport Chain Component Deletions  

Kwon, Young-Yon (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Choi, Kyung-Mi (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Cho, ChangYeon (Animal Genetic Resources Research Center, National Institute of Animal Science, Rural Development Administration)
Lee, Cheol-Koo (Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University)
Abstract
Mitochondria play a crucial role in eukaryotic cells; the mitochondrial electron transport chain (ETC) generates adenosine triphosphate (ATP), which serves as an energy source for numerous critical cellular activities. However, the ETC also generates deleterious reactive oxygen species (ROS) as a natural byproduct of oxidative phosphorylation. ROS are considered the major cause of aging because they damage proteins, lipids, and DNA by oxidation. We analyzed the chronological life span, growth phenotype, mitochondrial membrane potential (MMP), and intracellular ATP and mitochondrial superoxide levels of 33 single ETC component-deleted strains during the chronological aging process. Among the ETC mutant strains, 14 ($sdh1{\Delta}$, $sdh2{\Delta}$, $sdh4{\Delta}$, $cor1{\Delta}$, $cyt1{\Delta}$, $qcr7{\Delta}$, $qcr8{\Delta}$, $rip1{\Delta}$, $cox6{\Delta}$, $cox7{\Delta}$, $cox9{\Delta}$, $atp4{\Delta}$, $atp7{\Delta}$, and $atp17{\Delta}$) showed a significantly shorter life span. The deleted genes encode important elements of the ETC components succinate dehydrogenase (complex II) and cytochrome c oxidase (complex IV), and some of the deletions lead to structural instability of the membrane-$F_1F_0$-ATP synthase due to mutations in the stator stalk (complex V). These short-lived strains generated higher superoxide levels and produced lower ATP levels without alteration of MMP. In summary, ETC mutations decreased the life span of yeast due to impaired mitochondrial efficiency.
Keywords
cellular ATP; electron transport chain; ETC-component single gene deletion; mitochondria; mitochondrial ROS;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Aggeler, R., and Capaldi, R.A. (1990). Yeast cytochrome c oxidase subunit VII is essential for assembly of an active enzyme. Cloning, sequencing, and characterization of the nuclearencoded gene. J. Biol. Chem. 265, 16389-16393.
2 Bratic, A., and Larsson, N.G. (2013). The role of mitochondria in aging. J. Clin. Invest. 123, 951-957.   DOI
3 Breitenbach, M., Laun, P., Dickinson, J.R., Klocker, A., Rinnerthaler, M., Dawes, I.W., Aung-Htut, M.T., Breitenbach-Koller, L., Caballero, A., Nystrom, T., et al. (2012). The role of mitochondria in the aging processes of yeast. Subcell. Biochem. 57, 55-78.
4 Choi, J.S., and Lee, C.K. (2013). Maintenance of cellular ATP level by caloric restriction correlates chronological survival of budding yeast. Biochem. Biophys. Res. Commun. 439, 126-131.   DOI
5 Choi, J.S., Choi, K.M., and Lee, C.K. (2011). Caloric restriction improves efficiency and capacity of the mitochondrial electron transport chain in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 409, 308-314.   DOI
6 Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2013a). Characterization of global gene expression during assurance of lifespan extension by caloric restriction in budding yeast. Exp. Gerontol. 48, 1455-1468.   DOI
7 Choi, K.M., Lee, H.L., Kwon, Y.Y., Kang, M.S., Lee, S.K., and Lee, C.K. (2013b). Enhancement of mitochondrial function correlates with the extension of lifespan by caloric restriction and caloric restriction mimetics in yeast. Biochem. Biophys. Res. Commun. 441, 236-242.   DOI
8 Choi, K.M., Kwon, Y.Y., and Lee, C.K. (2015). Disruption of Snf3/Rgt2 glucose sensors decreases lifespan and caloric restriction effectiveness through Mth1/Std1 by adjusting mitochondrial efficiency in yeast. FEBS Lett. 589, 349-357.   DOI
9 de Grey, A.D. (2005). Reactive oxygen species production in the mitochondrial matrix: implications for the mechanism of mitochondrial mutation accumulation. Rejuvenation Res. 8, 13-17.   DOI
10 Demir, A.B., and Koc, A. (2010). Assessment of chronological lifespan dependent molecular damages in yeast lacking mitochondrial antioxidant genes. Biochem. Biophys. Res. Commun. 400, 106-110.   DOI
11 Duttaroy, A., Paul, A., Kundu, M., and Belton, A. (2003). A Sod2 null mutation confers severely reduced adult life span in Drosophila. Genetics 165, 2295-2299.
12 Gerschman, R., Gilbert, D.L., Nye, S.W., Dwyer, P., and Fenn, W.O. (1954). Oxygen poisoning and x-irradiation: a mechanism in common. Science 119, 623-626.   DOI
13 Gomes, F., Tahara, E.B., Busso, C., Kowaltowski, A.J., and Barros, M.H. (2013). nde1 deletion improves mitochondrial DNA maintenance in Saccharomyces cerevisiae coenzyme Q mutants. Biochem. J. 449, 595-603.   DOI
14 Gralla, E.B., and Kosman, D.J. (1992). Molecular genetics of superoxide dismutases in yeasts and related fungi. Adv. Genet. 30, 251-319.   DOI
15 Guelin, E., Chevallier, J., Rigoulet, M., Guerin, B., and Velours, J. (1993). ATP synthase of yeast mitochondria. Isolation and disruption of the ATP epsilon gene. J. Biol. Chem. 268, 161-167.
16 Hacioglu, E., Demir, A.B., and Koc, A. (2012). Identification of respiratory chain gene mutations that shorten replicative life span in yeast. Exp. Gerontol. 47, 149-153.   DOI
17 Kaeberlein, M., Kirkland, K.T., Fields, S., and Kennedy, B.K. (2005). Genes determining yeast replicative life span in a long-lived genetic background. Mech. Ageing Dev. 126, 491-504.   DOI
18 Harman, D. (1956). Aging: a theory based on free radical and radiation chemistry. J. Gerontol. 11, 298-300.   DOI
19 Harman, D. (1972). The biologic clock: the mitochondria? J. Am. Geriatr. Soc. 20, 145-147.   DOI
20 Joseph-Horne, T., Hollomon, D.W., and Wood, P.M. (2001). Fungal respiration: a fusion of standard and alternative components. Biochim. Biophys. Acta 1504, 179-195.   DOI
21 Lee, Y.L., and Lee, C.K. (2008). Transcriptional response according to strength of calorie restriction in Saccharomyces cerevisiae. Mol. Cells 26, 299-307.
22 Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., et al. (1995). Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11, 376-381.   DOI
23 McCord, J.M., and Fridovich, I. (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049-6055.
24 Mitchell, P. (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191, 144-148.   DOI
25 Muller, F.L., Liu, Y., and Van Remmen, H. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279, 49064-49073.   DOI
26 Norais, N., Prome, D., and Velours, J. (1991). ATP synthase of yeast mitochondria. Characterization of subunit d and sequence analysis of the structural gene ATP7. J. Biol. Chem. 266, 16541-16549.
27 Trueblood, C.E., and Poyton, R.O. (1987). Differential effectiveness of yeast cytochrome c oxidase subunit genes results from differences in expression not function. Mol. Cell. Biol. 7, 3520-3526.   DOI
28 Passos, J.F., von Zglinicki, T., and Saretzki, G. (2006). Mitochondrial dysfunction and cell senescence: cause or consequence? Rejuvenation Res. 9, 64-68.   DOI
29 Scialo, F., Mallikarjun, V., Stefanatos, R., and Sanz, A. (2013). Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid. Redox Signal. 19, 1953-1969.   DOI
30 Stehr-Green, P.A., Cochi, S.L., Preblud, S.R., and Orenstein, W.A. (1990). Evidence against increasing rubella seronegativity among adolescent girls. Am. J. Public Health 80, 88.   DOI
31 Uh, M., Jones, D., and Mueller, D.M. (1990). The gene coding for the yeast oligomycin sensitivity-conferring protein. J. Biol. Chem. 265, 19047-19052.
32 Van Raamsdonk, J.M., and Hekimi, S. (2009). Deletion of the mitochondrial superoxide dismutase sod-2 extends lifespan in Caenorhabditis elegans. PLoS Genet. 5, e1000361.   DOI
33 Veatch, J.R., McMurray, M.A., Nelson, Z.W., and Gottschling, D.E. (2009). Mitochondrial dysfunction leads to nuclear genome instability via an iron-sulfur cluster defect. Cell 137, 1247-1258.   DOI
34 Velours, J., Arselin, G., Paul, M.F., Galante, M., Durrens, P., Aigle, M., and Guerin, B. (1989). The yeast ATP synthase subunit 4: structure and function. Biochimie 71, 903-915.   DOI