DOI QR코드

DOI QR Code

CGI-58 Protein Acts as a Positive Regulator of Triacylglycerol Accumulation in Phaeodactylum tricornutum

  • Qin Shu (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Yufang Pan (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences) ;
  • Hanhua Hu (Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences)
  • 투고 : 2022.09.20
  • 심사 : 2022.11.28
  • 발행 : 2023.02.28

초록

Comparative gene identification-58 (CGI-58) is an activating protein of triacylglycerol (TAG) lipase. It has a variety of catalytic activities whereby it may play different roles in diverse organisms. In this study, a homolog of CGI-58 in Phaeodactylum tricornutum (PtCGI-58) was identified. PtCGI-58 was localized in mitochondria by GFP fusion protein analysis, which is different from the reported subcellular localization of CGI-58 in animals and plants. Respectively, PtCGI-58 overexpression resulted in increased neutral lipid content and TAG accumulation by 42-46% and 21-32%. Likewise, it also increased the relative content of eicosapentaenoic acid (EPA), and in particular, the EPA content in TAGs almost doubled. Transcript levels of genes involved in de novo fatty acid synthesis and mitochondrial β-oxidation were significantly upregulated in PtCGI-58 overexpression strains compared with wild-type cells. Our findings suggest that PtCGI-58 may mediate the breakdown of lipids in mitochondria and the recycling of acyl chains derived from mitochondrial β-oxidation into TAG biosynthesis. Moreover, this study potentially illuminates new functions for CGI-58 in lipid homeostasis and provides a strategy to enrich EPA in algal TAGs.

키워드

과제정보

This work was supported by the National Natural Science Foundation of China (41976119 and 91751117) and the International Partnership Program of Chinese Academy of Sciences (Grant No. 075GJHZ2022014MI).

참고문헌

  1. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237-240. https://doi.org/10.1126/science.281.5374.237
  2. Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. 2004. The evolution of modern eukaryotic phytoplankton. Science 305: 354-360. https://doi.org/10.1126/science.1095964
  3. Du Z-Y, Benning C. 2016. Triacylglycerol accumulation in photosynthetic cells in plants and algae, pp. 179-205. In Nakamura Y, LiBeisson Y (eds.), Lipids in Plant and Algae Development. Subcellular Biochemistry, Vol. 86. Springer, Cham.
  4. Yu E, Zendejas F, Lane P, Gaucher S, Simmons B, Lane T. 2009. Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Baccilariophyceae) during starvation. J. Appl. Phycol. 21: 669-681. https://doi.org/10.1007/s10811-008-9400-y
  5. Kong F, Romero IT, Warakanont J, Li-Beisson Y. 2018. Lipid catabolism in microalgae. New Phytol. 218: 1340-1348. https://doi.org/10.1111/nph.15047
  6. Casas-Godoy L, Duquesne S, Bordes F, Sandoval G, Marty A. 2012. Lipases: an overview. pp 3-30. In Sandoval G (ed.), Lipases and Phospholipases. Methods in Molecular Biology, Vol. 861. Humana Press, New York, NY.
  7. Oberer M, Boeszoermenyi A, Nagy HM, Zechner R. 2011. Recent insights into the structure and function of CGI-58. Curr. Opin. Lipidol. 22: 149-158. https://doi.org/10.1097/MOL.0b013e328346230e
  8. Yu L, Li Y, Grise A, Wang H. 2020. CGI-58: versatile regulator of intracellular lipid droplet homeostasis. Adv. Exp. Med. Biol. 1276: 197-222. https://doi.org/10.1007/978-981-15-6082-8_13
  9. Yamaguchi T, Omatsu N, Matsushita S, Osumi T. 2004. CGI-58 interacts with Perilipin and is localized to lipid droplets: possible involvement of CGI-58 mislocalization in Chanarin-Dorfman syndrome. J. Biol. Chem. 279: 30490-30497. https://doi.org/10.1074/jbc.M403920200
  10. Subramanian V, Rothenberg A, Gomez C, Cohen AW, Garcia A, Bhattacharyya S, et al. 2004. Perilipin A mediates the reversible binding of CGI-58 to lipid droplets in 3T3-L1 adipocytes. J. Biol. Chem. 279: 42062-42071. https://doi.org/10.1074/jbc.M407462200
  11. Radner FPW, Streith IE, Schoiswohl G, Schweiger M, Kumari M, Eichmann TO, et al. 2010. Growth retardation, impaired triacylglycerol catabolism, hepatic steatosis, and lethal skin barrier defect in mice lacking comparative gene identification-58 (CGI58). J. Biol. Chem. 285: 7300-7311. https://doi.org/10.1074/jbc.M109.081877
  12. James CN, Horn PJ, Case CR, Gidda SK, Zhang D, Mullen RT, et al. 2010. Disruption of the Arabidopsis CGI-58 homologue produces Chanarin-Dorfman-like lipid droplet accumulation in plants. Proc. Nat. Acad. Sci. USA 107: 17833-17838. https://doi.org/10.1073/pnas.0911359107
  13. Park S, Gidda SK, James CN, Horn PJ, Khuu N, Seay DC, et al. 2013. The α/β hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis. Plant Cell 25: 1726-1739. https://doi.org/10.1105/tpc.113.111898
  14. Trentacoste EM, Shrestha RP, Smith SR, Gle C, Hartmann AC, Hildebrand M, et al. 2013. Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc. Nat. Acad. Sci. USA 110: 19748-19753. https://doi.org/10.1073/pnas.1309299110
  15. Ghosh AK, Ramakrishnan G, Rajasekharan R. 2008. YLR099C (ICT1) encodes a soluble Acyl-CoA-dependent lysophosphatidic acid acyltransferase responsible for enhanced phospholipid synthesis on organic solvent stress in Saccharomyces cerevisiae. J. Biol. Chem. 283: 9768-9775. https://doi.org/10.1074/jbc.M708418200
  16. Montero-Moran G, Caviglia JM, McMahon D, Rothenberg A, Subramanian V, Xu Z, et al. 2010. CGI-58/ABHD5 is a coenzyme Adependent lysophosphatidic acid acyltransferase. J. Lipid Res. 51: 709-719. https://doi.org/10.1194/jlr.M001917
  17. Ghosh AK, Chauhan N, Rajakumari S, Daum G, Rajasekharan R. 2009. At4g24160, a soluble acyl-coenzyme A-dependent lysophosphatidic acid acyltransferase. Plant Physiol. 151: 869-881. https://doi.org/10.1104/pp.109.144261
  18. McMahon D, Dinh A, Kurz D, Shah D, Han G-S, Carman GM, et al. 2014. Comparative gene identification 58/α/β hydrolase domain 5 lacks lysophosphatidic acid acyltransferase activity. J. Lipid Res. 55: 1750-1761. https://doi.org/10.1194/jlr.M051151
  19. Guillard RRL. 1975. Culture of phytoplankton for feeding marine invertebrates. pp. 29-60. In Smith WL, Canley MH (eds.), Culture of Marine Invertebrate Animals. Plenum Press, New York.
  20. Collos Y, Mornet F, Sciandra A, Waser N, Larson A, Harrison PJ. 1999. An optical method for the rapid measurement of micromolar concentrations of nitrate in marine phytoplankton cultures. J. Appl. Phycol. 11: 179-184. https://doi.org/10.1023/A:1008046023487
  21. Maheswari U, Jabbari K, Petit J-L, Porcel BM, Allen AE, Cadoret J-P, et al. 2010. Digital expression profiling of novel diatom transcripts provides insight into their biological functions. Genome Biol. 11: R85.
  22. Guindon S, Lethiec F, Duroux P, Gascuel O. 2005. PHYML Online-a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res. 33: W557-W559. https://doi.org/10.1093/nar/gki352
  23. Zaslavskaia LA, Lippmeier JC, Kroth PG, Grossman AR, Apt KE. 2000. Transformation of the diatom Phaeodactylum tricornutum (Bacillariophyceae) with a variety of selectable marker and reporter genes. J. Phycol. 36: 379-386. https://doi.org/10.1046/j.1529-8817.2000.99164.x
  24. Zhang C, Hu H. 2014. High-efficiency nuclear transformation of the diatom Phaeodactylum tricornutum by electroporation. Mar. Genomics 16: 63-66. https://doi.org/10.1016/j.margen.2013.10.003
  25. Siaut M, Heijde M, Mangogna M, Montsant A, Coesel S, Allen A, et al. 2007. Molecular toolbox for studying diatom biology in Phaeodactylum tricornutum. Gene 406: 23-35. https://doi.org/10.1016/j.gene.2007.05.022
  26. Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT  method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
  27. Bligh EG, Dyer WJ. 1959. A rapid method of lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917. https://doi.org/10.1139/y59-099
  28. Reiser S, Somerville C. 1997. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl-coenzyme a reductase. J. Bacteriol. 179: 2969-2975. https://doi.org/10.1128/jb.179.9.2969-2975.1997
  29. Xie Y, Wu B, Wu Z, Tu X, Xu S, Lv X, et al. 2020. Ultrasound-assisted one-phase solvent extraction coupled with liquid chromatography-quadrupole time-of-flight mass spectrometry for efficient profiling of egg yolk lipids. Food Chem. 319: 126547
  30. Gruber A, Cornaciu I, Lass A, Schweiger M, Poeschl M, Eder C, et al. 2010. The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J. Biol. Chem. 285: 12289-12298. https://doi.org/10.1074/jbc.M109.064469
  31. Schrag JD, Cygler M. 1997. Lipases and αβ hydrolase fold. Meth. Enzymol. 284: 85-107. https://doi.org/10.1016/S0076-6879(97)84006-2
  32. Ghosh AK, Ramakrishnan G, Chandramohan C, Rajasekharan R. 2008. CGI-58, the causative gene for Chanarin-Dorfman syndrome, mediates acylation of lysophosphatidic acid. J. Biol. Chem. 283: 24525-24533. https://doi.org/10.1074/jbc.M801783200
  33. Kurat CF, Natter K, Petschnigg J, Wolinski H, Scheuringer K, Scholz H, et al. 2006. Obese yeast: triglyceride lipolysis is functionally conserved from mammals to yeast. J. Biol. Chem. 281: 491-500. https://doi.org/10.1074/jbc.M508414200
  34. Li X, Pan Y, Hu H. 2018. Identification of the triacylglycerol lipase in the chloroplast envelope of the diatom Phaeodactylum tricornutum. Algal Res. 33: 440-447. https://doi.org/10.1016/j.algal.2018.06.023
  35. Barka F, Angstenberger M, Ahrendt T, Lorenzen W, Bode HB, Buchel C. 2016. Identification of a triacylglycerol lipase in the diatom Phaeodactylum tricornutum. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861: 239-248. https://doi.org/10.1016/j.bbalip.2015.12.023
  36. Jallet D, Xing D, Hughes A, Moosburner M, Simmons MP, Allen AE, et al. 2020. Mitochondrial fatty acid β-oxidation is required for storage-lipid catabolism in a marine diatom. New Phytol. 228: 946-958. https://doi.org/10.1111/nph.16744
  37. Hao X, Chen W, Amato A, Jouhet J, Marechal E, Moog D, et al. 2022. Multiplex CRISPR/Cas9 editing of the long-chain acyl-CoA synthetase family in the diatom Phaeodactylum tricornutum reveals that mitochondrial ptACSL3 is involved in the synthesis of storage lipids. New Phytol. 233: 1797-1812. https://doi.org/10.1111/nph.17911
  38. Bates PD, Durrett TP, Ohlrogge JB, Pollard M. 2009. Analysis of acyl fluxes through multiple pathways of triacylglycerol synthesis in developing soybean embryos. Plant Physiol. 150: 55-72. https://doi.org/10.1104/pp.109.137737
  39. Bates PD, Fatihi A, Snapp AR, Carlsson AS, Browse J, Lu C. 2012. Acyl editing and headgroup exchange are the major mechanisms that direct polyunsaturated fatty acid flux into triacylglycerols. Plant Physiol. 160: 1530-1539. https://doi.org/10.1104/pp.112.204438
  40. Khatib A, Arhab Y, Bentebibel A, Abousalham A, Noiriel A. 2016. Reassessing the potential activities of plant CGI-58 protein. PLoS One 11: e0145806
  41. Abida H, Dolch LJ, Meї C, Villanova V, Conte M, Block MA, et al. 2015. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167: 118-136. https://doi.org/10.1104/pp.114.252395
  42. Zhang J, Xu D, Nie J, Han R, Zhai Y, Shi Y. 2014. Comparative gene identification-58 (CGI-58) promotes autophagy as a putative lysophosphatidylglycerol acyltransferase. J. Biol. Chem. 289: 33044-33053.  https://doi.org/10.1074/jbc.M114.573857