• Title/Summary/Keyword: mining safety

Search Result 431, Processing Time 0.033 seconds

Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry

  • Rahmat, Muhammad Abdullah;Ismail, Aznan Fazli;Rodzi, Nursyamimi Diyana;Aziman, Eli Syafiqah;Idris, Wan Mohd Razi;Lihan, Tukimat
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2230-2243
    • /
    • 2022
  • The tin tailing processing industry in Malaysia has operated with minimal regard and awareness for material management and working environment safety, impacting the environment and workers in aspects of radiation and heavy metal exposure. RIA was conducted where environmental samples were analyzed, revealing concentrations of 226Ra, 232Th and 40K between the range of 0.1-10.0, 0.0-25.7, and 0.1-5.8 Bq/g respectively, resulting in the AED exceeding UNCEAR recommended value and regulation limit enforced by AELB (1 mSv/y). Raeq calculated indicates that samples collected pose a significant threat to human health from gamma-ray exposure. Assessment of heavy metal content via pollution indices of soil and sediment showed significant contamination and enrichment from processing activities conducted. As and Fe were two of the highest metals exposed both via soil ingestion with an average of 4.6 × 10-3 mg/kg-day and 1.4 × 10-4 mg/kg-day, and dermal contact with an average of 5.6 × 10-4 mg/kg-day and 6.0 × 10-4. mg/kg-day respectively. Exposure via accidental ingestion of soil and sediment could potentially cause adverse non-carcinogenic and carcinogenic health effect towards workers in the industry. Correlation analysis indicates the presence of a relationship between the concentration of NORM and trace elements.

Characteristics and Co-Occurrence Patterns of Fragrance Allergens in Consumer Chemical Products (생활화학제품의 알레르기반응가능 향료성분 함유 현황 및 동시 출현 패턴 조사)

  • Kim, Soomin;Lee, Kiyoung;Lim, Miyoung
    • Journal of Environmental Health Sciences
    • /
    • v.48 no.4
    • /
    • pp.206-215
    • /
    • 2022
  • Background: Fragrance substances in consumer products can cause adverse health effects such as contact allergy. In South Korea, consumer chemical products must list 26 known fragrance allergens on product labels when they contain more than 0.01%. Fragrance substances are mostly used in combination, so co-exposure can occur via use of a consumer chemical product. Co-exposure to fragrance allergens may show a synergistic effect on the human body. Objectives: The aims of the study were to analyze the characteristics of fragrance allergens in consumer chemical products available on public websites and to identify the co-occurrence patterns of fragrance allergens. Methods: The chemicals in 1,443 ingredient disclosures for consumer chemical products were collected through the Ecolife database. The 26 labelled fragrance allergens were identified by category of consumer chemical product. The co-occurrence patterns of the 26 labelled fragrance allergens were analyzed by frequent pattern mining. The unlabelled fragrance allergens presented by European Union Scientific Committee on Consumer Safety were also identified. Results: Consumer chemical products contained an average of 5.3±4.2 substances among the 26 labelled fragrance allergens. More than 85% of air fresheners, deodorizing agents, and fabric softeners contained at least one of the 26 labelled fragrance allergens. The most frequently contained fragrance allergens were limonene (50.5%), linalool (49.9%), hexyl cinnamal (34.0%), and citronellol (28.3%). 16.7% of consumer chemical products showed a co-occurrence of limonene, linalool, hexyl cinnamal, and citronellol. Thirty-eight unlabelled fragrance allergens were found in the consumer chemical products, with hexamethylindanopyran (25.2%) being the most frequently contained substance. Conclusions: The characteristics and co-occurrence patterns of 26 labelled fragrance allergens would be useful information for the management of co-exposure to fragrance allergens in consumer chemical products. It is necessary for attention to be paid to unlabelled fragrance allergens.

Who is to Blame for Infection?: Emotional Discourse in Editorial Articles during the Emerging Infectious Diseases Epidemics in Korea (감염병과 감정: 신종감염병에 관한 대중매체의 메시지와 공포, 분노 감정)

  • Kim, Jongwoo;Kang, Jiwoong
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.816-827
    • /
    • 2021
  • The purpose of this study is to understand the relationship between fear and anger emotions in the discourse produced by the media during the period of major emerging infectious diseases (SARS, Swine Flu, MERS, and COVID-19) that occurred since 2000 in Korea. The researcher collected editorial articles of the major daily newspaper after a significant epidemic of new infectious diseases and analyzed them using the Extended Parallel Processing Model (EPPM) and text mining techniques. In all epidemic times, fear appears stronger than anger, but the smaller the fear, the greater the risk control message is produced. In detail, fear emerges strongly in the discourse of the risk of infectious diseases or the economic crisis. Anger appears strong when the government's quarantine failures, groups where group infections occurred, and concealing information about infectious diseases. In this process, anger is strongly expressed against the factors that threaten the safety of society. Anger is also an emotion that can justify strong quarantine, but it can be the basis for discourse on minority hate. In this respect, anger is a two-sided emotion, so it must be handled carefully in the media.

Optimised neural network prediction of interface bond strength for GFRP tendon reinforced cemented soil

  • Zhang, Genbao;Chen, Changfu;Zhang, Yuhao;Zhao, Hongchao;Wang, Yufei;Wang, Xiangyu
    • Geomechanics and Engineering
    • /
    • v.28 no.6
    • /
    • pp.599-611
    • /
    • 2022
  • Tendon reinforced cemented soil is applied extensively in foundation stabilisation and improvement, especially in areas with soft clay. To solve the deterioration problem led by steel corrosion, the glass fiber-reinforced polymer (GFRP) tendon is introduced to substitute the traditional steel tendon. The interface bond strength between the cemented soil matrix and GFRP tendon demonstrates the outstanding mechanical property of this composite. However, the lack of research between the influence factors and bond strength hinders the application. To evaluate these factors, back propagation neural network (BPNN) is applied to predict the relationship between them and bond strength. Since adjusting BPNN parameters is time-consuming and laborious, the particle swarm optimisation (PSO) algorithm is proposed. This study evaluated the influence of water content, cement content, curing time, and slip distance on the bond performance of GFRP tendon-reinforced cemented soils (GTRCS). The results showed that the ultimate and residual bond strengths were both in positive proportion to cement content and negative to water content. The sample cured for 28 days with 30% water content and 50% cement content had the largest ultimate strength (3879.40 kPa). The PSO-BPNN model was tuned with 3 neurons in the input layer, 10 in the hidden layer, and 1 in the output layer. It showed outstanding performance on a large database comprising 405 testing results. Its higher correlation coefficient (0.908) and lower root-mean-square error (239.11 kPa) were obtained compared to multiple linear regression (MLR) and logistic regression (LR). In addition, a sensitivity analysis was applied to acquire the ranking of the input variables. The results illustrated that the cement content performed the strongest influence on bond strength, followed by the water content and slip displacement.

Elastic local buckling behaviour of corroded cold-formed steel columns

  • Nie Biao;Xu Shanhua;Hu WeiCheng;Chen HuaPeng;Li AnBang;Zhang ZongXing
    • Steel and Composite Structures
    • /
    • v.48 no.1
    • /
    • pp.27-41
    • /
    • 2023
  • Under the long-term effect of corrosive environment, many cold-formed steel (CFS) structures have serious corrosion problems. Corrosion leads to the change of surface morphology and the loss of section thickness, which results in the change of instability mode and failure mechanism of CFS structure. This paper mainly investigates the elastic local buckling behavior of corroded CFS columns. The surface morphology scanning test was carried out for eight CFS columns accelerated corrosion by the outdoor periodic spray test. The thin shell finite element (FE) eigen-buckling analysis was also carried out to reveal the influence of corrosion surface characteristics, corrosion depth, corrosion location and corrosion area on the elastic local buckling behaviour of the plates with four simply supported edges. The accuracy of the proposed formulas for calculating the elastic local buckling stress of the corroded plates and columns was assessed through extensive parameter studies. The results indicated that for the plates considering corrosion surface characteristics, the maximum deformation area of local buckling was located at the plates with the minimum average section area. For the plates with localized corrosion, the main buckling shape of the plates changed from one half-wave to two half-wave with the increase in corrosion area length. The elastic local buckling stress decreased gradually with the increase in corrosion area width and length. In addition, the elastic local buckling stress decreased slowly when corrosion area thickness was relatively large, and then tends to accelerate with the reduction in corrosion area thickness. The distance from the corrosion area to the transverse and longitudinal centerline of the plate had little effect on the elastic local buckling stress. Finally, the calculation formula of the elastic local buckling stress of the corroded plates and CFS columns was proposed.

Characteristics of S-wave and P-wave velocities in Gyeongju - Pohang regions of South Korea: Correlation analysis with strength and modulus of rocks and N values of soils

  • Min-Ji Kim;Tae-Min Oh;Dong-Woo Ryu
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.577-590
    • /
    • 2024
  • With increasing demand for nuclear power generation, nuclear structures are being planned and constructed worldwide. A grave safety concern is that these structures are sensitive to large-magnitude shaking, e.g., during earthquakes. Seismic response analysis, which requires P- and S-wave velocities, is a key element in nuclear structure design. Accordingly, it is important to determine the P- and S-wave velocities in the Gyeongju and Pohang regions of South Korea, which are home to nuclear power plants and have a history of seismic activity. P- and S-wave velocities can be obtained indirectly through a correlation with physical properties (e.g., N values, Young's modulus, and uniaxial compressive strength), and researchers worldwide have proposed regression equations. However, the Gyeongju and Pohang regions of Korea have not been considered in previous studies. Therefore, a database was constructed for these regions. The database includes physical properties such as N values and P- and S-wave velocities of the soil layer, as well as the uniaxial compressive strength, Young's modulus, and P- and S-wave velocities of the bedrock layer. Using the constructed database, the geological characteristics and distribution of physical properties of the study region were analyzed. Furthermore, models for predicting P- and S-wave velocities were developed for soil and bedrock layers in the Gyeongju and Pohang regions. In particular, the model for predicting the S-wave velocity for the soil layers was compared with models from previous studies, and the results indicated its effectiveness in predicting the S-wave velocity for the soil layers in the Gyeongju and Pohang regions using the N values. The proposed models for predicting P- and S-wave velocities will contribute to predicting the damage caused by earthquakes.

The investigation of the applicability of Monte Carlo Simulation in analyzing TBM project requirements

  • Ulku Kalayci Sahinoglu
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2024
  • Geotechnical parameter estimation is critical to the design, performance, safety, and cost and schedule management in Tunnel Boring Machine projects. Since these parameters vary within a certain range, relying on mean values for evaluation introduces significant risks to the project. Due to the non-homogeneous characteristics of geological formation, data may not exhibit a normal distribution and the presence of outliers might be deceptive. Therefore, the use of reliable analyses and simulation models is inevitable in the course of the data evaluation process. Advanced modeling techniques enable comprehensive analysis of the project data and allowing to model the uncertainty in geotechnical parameters. This study involves using Monte Carlo Simulation method to predict probabilistic distributions of field data, and therefore, establish a basis for designs and in turn to minimize project risks. In the study, 166 sets of geotechnical data Obtained from 35 boreholes including Standard Penetration Test, Limit Pressure, Liquid Limit, and Plastic Limit values, which are mostly utilized parameters in estimating project requirements, were used to estimate the geotechnical data distribution of the study field. In this context, firstly, the data was subjected to multi-parameter linear regression and variance analysis. Then, the obtained equations were implemented into a Monte Carlo Simulation, and probabilistic distributions of the geotechnical data of the field were simulated and corresponding to the 90% probability range, along with the minimum and maximum values at the 5% probability levels presented. Accordingly, while the average SPT N30 value is 42.86, but the highest occurrence rate is 50.81. For Net Limit Pressure, the average field data is 17.07 kg/cm2, with the maximum occurrence between 9.6 kg/cm2 and 13.7 kg/cm2. Similarly, the average Plastic Limit value is 22.32, while the most probable value is 20.6. The average Liquid Limit value is 56.73, with the highest probability at 54.48, as indicated in the statistical data distribution. Understanding the percentage distribution of data likely to be encountered in the project allows for accurate forecasting of both high and low probability scenarios, offering a significant advantage, particularly in ordering TBM requirements.

Diagnosis for Review of Statement and System Improvement of Consultation on the Coastal Area Utilization in Korea (해역이용협의 검토유형 분석 및 제도개선 진단)

  • Kim, Gui-Young;Lee, Dae-In;Jeon, Kyeong-Am;Eom, Ki-Hyuk;Woo, Young-Seok
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.345-354
    • /
    • 2009
  • The review of statements and coastal development characteristics in South Korea were diagnosed by the consultation on the coastal area utilization in Korea. The occupation and the use of public water were dominated by installation of coastal structure and seawater supply and drainage whereas the reclamation areas were predominantly utilized for developing industrial complex, harbor, fishing port and road. The occupation and the use were dominant in western coast, but reclamation was dominant in southern coast of Korea. The number of utilization cases was particularly greater in Jeonnam, Gyeongnam, and Gyeonggi Province including Incheon. The number of the statements reviews increased by more than 200 cases in 2008 compared with 2007, and most of them were the simple statements. The statements related to ocean disposal of dredged sediment, reclamation, dredging sediment, seawater supply and drainage, and marine sand mining were submitted for review. Coastal utilization was especially active in the regions of seawater quality criteria I and II. In particular, special management sea areas designated under the relevant marine regulations were utilized mostly by reclamation for developing harbor, fishing port and coastal structure. Development activities in national parks comprised primarily structure installation and coastal maintenance. In the fisheries resources protection areas, 40% of the total cases accounted for coastal maintenance, 31% for structure installation, and 16% for seawater supply and drainage. In addition, alternative plans for the improvement in policies and system of marine environmental impact assessment were suggested to enhance the function and confidence of the consultation on the coastal area utilization in Korea.

  • PDF

Optimum Design of Underwater Connector Hole Arrangement for Deep-sea Pressure Vessel Cover Plate (심해 압력용기 덮개판의 수중 커넥터홀 배치 최적설계)

  • Lee, Minuk;Park, Soung-Jea;Yeu, Tae-Kyeong;Ki, Hyong-Woo;Hong, Sup;Cho, Su-Gil;Jang, Jun-Yong;Lee, Tae Hee;Choi, Jong-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1627-1633
    • /
    • 2012
  • A deep-sea pressure vessel needs to protect the internal electrical equipment from the high external pressure. Thus, the pressure vessel should be designed to be watertight and structurally safe. In this study, a cylindrical-type pressure vessel comprising a hollow cylinder and cover plates at both ends is investigated. For communication between the internal electronic equipment and the external device, holes are bored on the cover plate to install underwater connectors. Considering the type of internal equipment and underwater connector specifications, multiple holes may be required. These holes can affect the structural safety of the pressure vessel cover plate. In this study, the optimum design of the hole arrangement in consideration of the structural safety of the cover plate was performed.

Study on Applicability of Asymmetry V-Cut method in Underground Mine (비대칭 V-cut의 갱내 광산에 대한 적용성 연구)

  • Kim, Jung-Gyu;Jung, Seung-Won;Kim, Jun-Ha;Kim, Jong-Gwan
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.520-533
    • /
    • 2021
  • It is necessary to increase the blasting efficiency in order to minimize the economic loss caused when the excavation cross section is reduced due to the stability problem of underground mining development, and for this, a new blasting design is proposed. In this study, the blasting efficiency of the general design in the field, the suggestion designI, which added two columns to production blasting, and the suggestion design II, which added one column to create asymmetry, is compared. Advance rate and fragmentation were selected as the evaluation index of the blasting efficiency. In the case of advance rate, compared to the normal, the suggestionI improved by 6.07% and the suggestionII improved by 4.65%. In the case of fragmentation, based on P80, compared to the normal, the suggestionI reduced about 58% and the suggestionII was about 47%. Accoording to the evaluation index, the suggestion designI shows better blasting efficiency than the suggestion designII. But considering the additional work time and cost required for the suggestion designI due to the insignificant difference in the evaluation index results, the asymmetry V-cut, the suggestion designII, is judged to be a more suitable blasting design for the site.