DOI QR코드

DOI QR Code

Assessment of natural radionuclides and heavy metals contamination to the environment: Case study of Malaysian unregulated tin-tailing processing industry

  • Rahmat, Muhammad Abdullah (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Ismail, Aznan Fazli (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Rodzi, Nursyamimi Diyana (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Aziman, Eli Syafiqah (Nuclear Science Programme, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Idris, Wan Mohd Razi (Water Analysis, Faculty of Science and Technology, Universiti Kebangsaan Malaysia) ;
  • Lihan, Tukimat (Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia)
  • Received : 2021.07.07
  • Accepted : 2021.12.12
  • Published : 2022.06.25

Abstract

The tin tailing processing industry in Malaysia has operated with minimal regard and awareness for material management and working environment safety, impacting the environment and workers in aspects of radiation and heavy metal exposure. RIA was conducted where environmental samples were analyzed, revealing concentrations of 226Ra, 232Th and 40K between the range of 0.1-10.0, 0.0-25.7, and 0.1-5.8 Bq/g respectively, resulting in the AED exceeding UNCEAR recommended value and regulation limit enforced by AELB (1 mSv/y). Raeq calculated indicates that samples collected pose a significant threat to human health from gamma-ray exposure. Assessment of heavy metal content via pollution indices of soil and sediment showed significant contamination and enrichment from processing activities conducted. As and Fe were two of the highest metals exposed both via soil ingestion with an average of 4.6 × 10-3 mg/kg-day and 1.4 × 10-4 mg/kg-day, and dermal contact with an average of 5.6 × 10-4 mg/kg-day and 6.0 × 10-4. mg/kg-day respectively. Exposure via accidental ingestion of soil and sediment could potentially cause adverse non-carcinogenic and carcinogenic health effect towards workers in the industry. Correlation analysis indicates the presence of a relationship between the concentration of NORM and trace elements.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Science, Technology, and Innovation (MOSTI) under research Grant ST-2019-004. The authors express gratitude to the Nuclear Science Program staff, UKM, for their technical support throughout the research.

References

  1. I.A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, M.S. Elias, Determination of the elemental concentration of uranium and thorium in the products and byproducts of amang tin tailings process, AIP Conf. Proc. 1799 (2017), https://doi.org/10.1063/1.4972913.
  2. N.K. Sapari, H. Zabidi, K.S. Ariffin, Geochemical prospecting of tin mineralization zone at Belukar Semang prospect, Gerik, Perak, Procedia Chem. 19 (2016) 729-736, https://doi.org/10.1016/j.proche.2016.03.077.
  3. I.A. Alnour, H. Wagiran, N. Ibrahim, S. Hamzah, M.S. Elias, Gross alpha and gross beta activity in the products and by-product of amang tin tailings process, J. Radioanal. Nucl. Chem. 303 (2015) 1877-1882, https://doi.org/10.1007/s10967-014-3708-7.
  4. A. Gupta, D.S. Yan, Gravity separation, in: Miner. Process. Des. Oper., Elsevier, 2016, pp. 563-628, https://doi.org/10.1016/b978-0-444-63589-1.00016-2.
  5. C.N.A. Che Zainul Bahri, A.F. Ismail, A. Ab Majid, Synthesis of thorium tetrafluoride (ThF 4 ) by ammonium hydrogen difluoride (NH 4 HF 2 ), Nucl. Eng. Technol. 51 (2019) 792-799, https://doi.org/10.1016/j.net.2018.12.023.
  6. M. Hashim, N. Nayan, Y. Saleh, H. Mahat, Z. Mat Said, W. Fhei Shiang, Water quality assessment of former tin mining lakes for recreational purposes in Ipoh city, Perak, Malaysia, Indones. J. Geogr. 50 (2018) 25-33, https://doi.org/10.22146/ijg.15665.
  7. Y.A. Abdel-Razek, O.A. Desouky, A. Elshenawy, A.S. Nasr, H.S. Mohmmed, A.A. Elsayed, et al., Assessment of the radiation exposures during separation of rare earth elements from monazite mineral, Int. J. Adv. Res. 4 (2016) 144-149, https://doi.org/10.21474/IJAR01.
  8. S. Lubis, M. Shibdawa, A. Haruna, Determination of natural radioactive elements in vegetables irrigated with water from tin mining ponds around Dorowa in Barkin Ladi, plateau state, Nigeria, Sci. Forum (Journal Pure Appl. Sci. 16 (2019) 1, https://doi.org/10.5455/sf.16982.
  9. N.D. Pusporini, Suyanti, R.A. Amiliana, H. Poernomo, Processing and refining of tin tailing mining, J. Phys. Conf. Ser. 1436 (2020), https://doi.org/10.1088/1742-6596/1436/1/012136.
  10. O. Gunawan, E. Pudjadi, M. Musbach, Wahyudi, technologically enchanced naturally occurring radioactive materials (TENORM) analysis of Bangka tin slag, J. Phys. Conf. Ser. 1198 (2) (2019) 1-7, https://doi.org/10.1088/1742-6596/1198/2/022006.
  11. M. Atipo, O. Olarinoye, B. Awojoyogbe, M. Kolo, High terrestrial radiation level in an active tin-mine at Jos South , Nigeria high terrestrial radiation level in an active tin-mine at Jos South , Nigeria, J. Appl. Sci. Environ. Manag. 24 (3) (2020) 435-442, https://doi.org/10.4314/jasem.v24i3.6.
  12. E.S. Aziman, A.H.J. Mohd Salehuddin, A.F. Ismail, Remediation of thorium (IV) from wastewater: current status and way forward, Separ. Purif. Rev. 50 (2021) 177-202, https://doi.org/10.1080/15422119.2019.1639519.
  13. H.T.T. Ngo, P. Watchalayann, D.B. Nguyen, H.N. Doan, L. Liang, Environmental health risk assessment of heavy metal exposure among children Living in an informal E-waste processing village in vietnam, Sci. Total Environ. (2020) 142982, https://doi.org/10.1016/j.scitotenv.2020.142982.
  14. F.M. Kusin, N.N.M. Azani, S.N.M.S. Hasan, N.A. Sulong, Distribution of heavy metals and metalloid in surface sediments of heavily-mined area for bauxite ore in Pengerang, Malaysia and associated risk assessment, Catena 165 (2018) 454-464, https://doi.org/10.1016/j.catena.2018.02.029.
  15. P.B. Tchounwou, C.G. Yedjou, A.K. Patlolla, D.J. Sutton, Heavy metal toxicity and the environment, Mol. Clin. Environ. Toxicol. 101 (2012) 133-164, https://doi.org/10.1007/978-3-7643-8340-4_6.
  16. H.T. Abba, M.A. Saleh, W.M.S.W. Hassan, A.S. Aliyu, A.T. Ramli, Mapping of natural gamma radiation (NGR) dose rate distribution in tin mining areas of Jos Plateau, Nigeria, Environ. Earth Sci. 76 (2017) 1-9, https://doi.org/10.1007/s12665-017-6534-8.
  17. Y. Hamzah, M. Mardhiansyah, L.N. Firdaus, Characterization of rare earth elements in tailing of ex-tin mining Sands from Singkep Island, Indonesia, Aceh Int. J. Sci. Technol. 7 (2018) 131-137, https://doi.org/10.13170/aijst.7.2.8622.
  18. R. Irzon, I. Syafri, J. Hutabarat, P. Sendjaja, S. Permanadewi, Heavy metals content and pollution in tin tailings from Singkep Island, Riau, Indonesia, Sains Malays. 47 (2018) 2609-2616, https://doi.org/10.17576/jsm-2018-4711-03.
  19. D.E. Andini, F.I.P. Sari, Study of rare earth elements and heavy metals in tin tailing from mining activities on North Bangka Island, J. Phys. Conf. Ser. 1517 (2020), https://doi.org/10.1088/1742-6596/1517/1/012084.
  20. AELB, Perintah Perlesenan Tenaga Atom (Kilang Amang Kecil) (Pengecualian) 1994, 1984.
  21. AELB, Peraturan-Peraturan Pelesenan Tenaga Atom, Perlindungan Sinaran Keselamatan Asas), 2010, 2010.
  22. B. Ismail, N. Mohsen, P. Abdullah, Radioactivity and radiological risk associated with effluent sediment containing technologically enhanced naturally occurring radioactive materials in amang (tin tailings) processing industry, J. Environ. Radioact. 95 (2007) 161-170, https://doi.org/10.1016/j.jenvrad.2007.02.009.
  23. M. Nasirian, B. Ismail, P. Abdullah, A. Jaafar, Gamma hazards and risk associated with norm in sediment from amang processing recycling ponds, Malaysian J. Anal. Sci. 11 (2007) 314-323.
  24. M. Omar, I. Sulaiman, A. Hassan, A.K. Wood, Radiation dose assessment at amang processing plants in Malaysia, Radiat. Protect. Dosim. 124 (2007) 400-406, https://doi.org/10.1093/rpd/ncm212.
  25. A.R. Zulfahmi, W.Y.W. Zuhairi, M.T Raihan, A.R. Sahibin, I.W.M Razi, L. Tukimat, Z.S.N. Syakireen Z.S.N.S.N., A. Noorulakma, Influence of Amang (Tin Tailing) on Geotechnical Properties of Clay Soil 3rd, 41, Sains Malaysiana, 2012.
  26. Z. Hamzah, M. Ahmad, A. Saat, DETERMINATION of HEAVY MINERALS IN "AMANG" from KAMPUNG GAJAH EX-MINING AREA (Penentuan Mineral Berat Dalam "Amang" Dari Kawasan Bekas Lombong Kampung Gajah), 2009.
  27. J.R. Cooper, K. Randle, R.S. Sokhi, Radioactive Releases in the Environment: Impact and Assessment, 2003.
  28. S. Abdullahi, A.F. Ismail, S. Samat, Radiological characterization of building materials used in Malaysia and assessment of external and internal doses, Nucl. Sci. Tech. 30 (2019), https://doi.org/10.1007/s41365-019-0569-3.
  29. S. Abdullahi, A.F. Ismail, M.S. Yasir, Radioactive investigation of Malaysia's building materials containing NORM and potential radiological risks analysis using RESRAD-BUILD computer code, Int. J. Environ. Anal. Chem. (2020) 1-13, https://doi.org/10.1080/03067319.2020.1746778.
  30. S. Abdullahi, A.F. Ismail, S.M. Fadzil, Assessment of the long-term possible radiological risk from the use of ceramic tiles in Malaysia, Nucl. Sci. Tech. 6 (2019), https://doi.org/10.1007/s41365-019-0558-6.
  31. S. Abdullahi, A.F. Ismail, S. Samat, Assessment of naturally occurring radionuclides in Malaysia'S building materials, Radiat. Protect. Dosim. 186 (2019) 520-523, https://doi.org/10.1093/rpd/ncz125.
  32. S. Abdullahi, A. Fazli, M.S. Yasir, Radiological hazard analysis of Malaysia ' s ceramic materials using generic and RESRAD - BUILD computer code approach, J. Radioanal. Nucl. Chem. 324 (1) (2020) 301-315, https://doi.org/10.1007/s10967-020-07070-3.
  33. A.F. Ismail, K. Rosli, W.M.R. Idris, S.A. Rahim, Determination of natural radionuclides concentrations and radiological hazard index due to application of condisoil® on hibiscus cannabinus (Kenaf) cultivation, Sains Malays. 47 (2018) 893-901, https://doi.org/10.17576/jsm-2018-4705-04.
  34. E.S. Aziman, A.F. Ismail, Frontier looking of rare-earth processed residue as sustainable thorium resources: an Insight into chemical composition and separation of thorium, Prog. Nucl. Energy 128 (2020) 103471, https://doi.org/10.1016/j.pnucene.2020.103471.
  35. A.H.J.M. Salehuddin, E.S. Aziman, C.N.A.C.Z. Bahri, M.A.R.A. Affendi, W.M.R. Idris, A.F. Ismail, Effectiveness study of thorium extraction from hydrochloric acid using di (2-Ethylhexyl) phosphoric acid (D 2 EHPA), Sains Malays. 48 (2019) 419-424, https://doi.org/10.17576/jsm-2019-4802-20.
  36. M.S.M. Sanusi, A.T. Ramli, S. Hashim, M.H. Lee, Radiological hazard associated with amang processing industry in Peninsular Malaysia and its environmental impacts, Ecotoxicol. Environ. Saf. 208 (2021) 111727, https://doi.org/10.1016/j.ecoenv.2020.111727.
  37. Z. Rahmat, I. Bahari, M.S. Yasir, R. Yahaya, A.A. Majid, Statistical prediction of environmental gamma radiation doses, in: Perak 39, 2010, pp. 599-605. Malaysia, Sains Malaysiana.
  38. Unscear, Sources and Effects of Ionizing Radiation, United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2000 Report to the General Assembly, 2000.
  39. S. Abdullahi, A.F. Ismail, S. Samat, Determination of indoor doses and excess lifetime cancer risks caused by building materials containing natural radionuclides in Malaysia, Nucl. Eng. Technol. 51 (2019) 325-336, https://doi.org/10.1016/j.net.2018.09.017.
  40. M.I. Abdul Adziz, K.S. Khoo, An assessment of absorbed dose and radiation hazard index from soil around repository facility at Bukit Kledang, Perak, Malaysia, IOP Conf. Ser. Mater. Sci. Eng. 298 (2018), https://doi.org/10.1088/1757-899X/298/1/012001.
  41. ICRP, Recommendations of the International Commission on Radiological Protection, 60, ICRP Publ, 1990, p. 21, 1990.
  42. R.N. Adiputra, F. Agustin, A. Sulastri, C.I. Abdullah, I. Nugraha, R. Andriansyah, M. Hadiprayitno, The tin ore separation process and optimizing the rare earth mineral (monazite) as a by-product of tin mining in East Belitung Regency, in: IOP Conf. Ser. Earth Environ. Sci., Institute of Physics Publishing, 2020, https://doi.org/10.1088/1755-1315/413/1/012004.
  43. F.A. Affandi, M.Y. Ishak, Heavy metal concentrations in tin mine effluents in Kepayang river, Perak, Malaysia, J. Phys. Sci. 29 (2018) 81-86. https://doi.org/10.21315/jps2018.29.s3.10
  44. K. Kim, S. Jeong, Separation of monazite from placer deposit by magnetic separation, Minerals 9 (2019), https://doi.org/10.3390/min9030149.
  45. V.F.E. Antony, M. Edraki, Environmental geochemistry of the abandoned mamut copper mine (Sabah) Malaysia, Environ. Geochem. Health 40 (2018) 189-207, https://doi.org/10.1007/s10653-016-9892-3.
  46. T. Crommentuijn, D. Sijm, J. De Bruijn, M. Van den Hoop, K. Van Leeuwen, E. Van de Plassche, Maximum permissible and negligible concentrations for metals and metalloids in The Netherlands, taking into account background concentrations, J. Environ. Manag. (2000) 121-143, https://doi.org/10.1006/jema.2000.0354.
  47. Ministerie Van Volkshuisvesting; Ruimtelijke Ordening En Milieu, Dutch Target and Intervention Values; 2000 (The New Dutch List), Netherlands Gov, 2000, pp. 1-12. Gaz. 2000, http://goo.gl/xXY1nS.
  48. Department of Environment Malaysia, Contaminated Land Management and Control Guidelines No . 1 : Malaysian Recommended Site Screening Levels for Contaminated Land, 2009.
  49. L.J. Looi, A.Z. Aris, F.M. Yusoff, N.M. Isa, H. Haris, Application of enrichment factor, geoaccumulation index, and ecological risk index in assessing the elemental pollution status of surface sediments, Environ. Geochem. Health 41 (2019) 27-42, https://doi.org/10.1007/s10653-018-0149-1.
  50. T.O. Kolawole, A.S. Olatunji, M.T. Jimoh, O.T. Fajemila, Heavy metal contamination and ecological risk assessment in soils and sediments of an industrial area in Southwestern Nigeria, J. Heal. Pollut. 8 (2018), https://doi.org/10.5696/2156-9614-8.19.180906.
  51. S. Bello, B.G. Muhammad, Evaluation of heavy metal pollution in soils of Dana Steel limited dumpsite, Katsina State, Nigeria using Pollution load and degree of contamination indices, Am. J. Eng. Res. 4 (2015) 161-169.
  52. J.B. Kowalska, R. Mazurek, M. Gasiorek, T. Zaleski, Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination-A review, Environ. Geochem. Health 40 (2018) 2395-2420, https://doi.org/10.1007/s10653-018-0106-z.
  53. N.F. Soliman, S.M. Nasr, M.A. Okbah, Potential ecological risk of heavy metals in sediments from the Mediterranean coast, Egypt, J. Environ. Heal. Sci. Eng. 13 (2015), https://doi.org/10.1186/s40201-015-0223-x.
  54. L. Hakanson, An ecological risk index for aquatic pollution control.a sedimentological approach, Water Res. 14 (1980) 975-1001, https://doi.org/10.1016/0043-1354(80)90143-8.
  55. USEPA, Exposure Factors Handbook; EPA, Environmental Protection Agency, Natl. Cent. Environ. Assess. Off. Res. Dev. Expo. Factors Handb., 1997, 1-1466. c:%5CDocuments and Settings%5Cturner_j%5CDesktop%5CJT_Biblioscape_8_111003%5CJT_Bib8_111003%5Cattachments%5Cefh-complete.pdf.
  56. M.Y. Azmi, R. Junidah, A. Siti Mariam, M.Y. Safiah, S. Fatimah, A.K. Norimah, B.K. Poh, M. Kandiah, M.S. Zalilah, W.M. Wan Abdul Manan, M.D. Siti Haslinda, A. Tahir, Body mass index (BMI) of adults: findings of the Malaysian adult nutrition survey (MANS), Malays. J. Nutr. 15 (2009) 97-119.
  57. P. Goker, P. Goker, M. Gulhal Bozkir, Determination of hand and palm surface areas as a percentage of body surface area in Turkish young adults, Trauma Emerg. Care. 2 (2017) 1-4, https://doi.org/10.15761/tec.1000135.
  58. USEPA, Recommended Default Exposure Factors, 2014. https://rais.ornl.gov/documents/EFH_Table.pdf.
  59. A.A. Mohammadi, A. Zarei, S. Majidi, A. Ghaderpoury, Y. Hashempour, M.H. Saghi, A. Alinejad, M. Yousefi, N. Hosseingholizadeh, M. Ghaderpoori, Carcinogenic and non-carcinogenic health risk assessment of heavy metals in drinking water of Khorramabad, Iran, MethodsX 6 (2019) 1642-1651, https://doi.org/10.1016/j.mex.2019.07.017.
  60. USEPA, Risk Assessment Guidance for Superfund, Volume I human health evaluation manual (Part A) I (1989) 289. EPA/540/1-89/002.
  61. Z. Li, Z. Ma, T.J. van der Kuijp, Z. Yuan, L. Huang, A review of soil heavy metal pollution from mines in China: pollution and health risk assessment, Sci. Total Environ. 468-469 (2014) 843-853, https://doi.org/10.1016/j.scitotenv.2013.08.090.
  62. Y.B. Man, X.L. Sun, Y.G. Zhao, B.N. Lopez, S.S. Chung, S.C. Wu, K.C. Cheung, M.H. Wong, Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world's most populated city, Environ. Int. 36 (2010) 570-576, https://doi.org/10.1016/j.envint.2010.04.014.
  63. U. Arisekar, R.J. Shakila, R. Shalini, G. Jeyasekaran, Human health risk assessment of heavy metals in aquatic sediments and freshwater fish caught from Thamirabarani River, the Western Ghats of South Tamil Nadu, Mar. Pollut. Bull. 159 (2020) 111496, https://doi.org/10.1016/j.marpolbul.2020.111496.
  64. Aelb, Kajian Semula Pengecualian Ke Atas Kilang Amang Kecil, 2020.
  65. F. Zeng, W. Wei, M. Li, R. Huang, F. Yang, Y. Duan, Heavy metal contamination in rice-producing soils of Hunan province, China and potential health risks, Int. J. Environ. Res. Publ. Health 12 (2015) 15584-15593, https://doi.org/10.3390/ijerph121215005.